Skip to main content
Log in

Regulation of aphid populations by aphidiid wasps: does parasitoid foraging behaviour or hyperparasitism limit impact?

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Aphidiid parasitoids (Hymenoptera: Aphidiidae) of aphids generally exploit only a small percentage of the available host resources in the field. This limited impact on aphid populations has often been explained as a consequence of hyperparasitism. We propose that a wasp's reproductive strategy, as opposed to hyperparasitism, is the dominant factor in aphidiid population dynamics. A wasp's foraging efficiency and oviposition decisions are influenced by several variables, including searching behaviour between and within patches, host choice (as modified by the aphids' defensive behaviours), and plant structural complexity. Two broadly different patterns of host exploitation have evolved in aphidiid wasps in relation to ant-aphid mutualism. Firstly, in species that are exposed to predation and hyperparasitism, a female may leave a patch before all suitable hosts are parasitized. Because predators and hyperparasitoids tend to aggregate at high aphid or aphidiid densities, or in response to aphid honeydew, this strategy enables females to reduce offspring mortality by “spreading the risk” over several host patches. Secondly, in species that have evolved mechanisms to avoid aggression by mutualistic ants, females are able to exploit a hyperparasitoid-free resource space. Such species may concentrate their eggs in only a few aphid colonies, which are thus heavily exploited. Although hyperparasitism of species in the first group tends to reach high levels, its overall impact on aphid-aphidiid population dynamics is probably limited by the low average fecundity of most hyperparasitoids. We discuss the foraging patterns of aphidiid wasps in relation to aphid population regulation in general, and to classical biological control in particular. We argue that a parasitoid's potential to regulate the host population is largely determined by its foraging strategy. In an exotic parasitoid, a behavioural syndrome that has evolved and presumably is adaptive in a more diverse (native) environment may, in a more uniform (managed) environment, result in suboptimal patch-leaving and oviposition decisions, and possibly increased resource usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andow DA, Prokrym DR (1990) Plant structural complexity and host-finding by a parasitoid. Oecologia 82:162–165

    Google Scholar 

  • Ayal Y, Green RF (1993) Optimal egg distribution among host patches for parasitoids subject to attack by hyperparasitoids. Am Nat 141:120–138

    Google Scholar 

  • Beddington JR, Hammond PS (1977) On the dynamics of host-parasite-hyperparasite interactions. J Anim Ecol 46:811–821

    Google Scholar 

  • Bennett AW, Sullivan DJ (1978) Defensive behavior against tertiary parasitism by the larva of Dendrocerus carpenteri, an aphid hyperparasitoid. J N Y Entomol Soc 86:153–160

    Google Scholar 

  • Bocchino FJ, Sullivan DJ (1981) Effects of venoms from two aphid hyperparasitoids, Asaphes lucens and Dendrocerus carpenteri (Hymenoptera: Pteromalidae and Megaspilidae), on larvae of Aphidius smithi (Hymenoptera: Aphidiidae). Can Entomol 113:887–889

    Google Scholar 

  • Boer PJ den (1968) Spreading of risk and stabilization of animal numbers. Acta Biotheor 18:165–194

    Google Scholar 

  • Bosch R van den, Schlinger EI, Lagace CF, Hall J (1966) Parasitization of Acyrthosiphon pisum by Aphidius smithi a density dependent process in nature (Homoptera: Aphididae) (Hymenoptera: Aphidiidae). Ecology 47:1049–1055

    Google Scholar 

  • Bosch R van den, Hom R, Matteson P, Frazer BD, Messenger PS, Davis CS (1979) Biological control of the walnut aphid in California: impact of the parasite, Trioxys pallidus. Hilgardia 47:1–13

    Google Scholar 

  • Brodeur J, McNeil JN (1991) The effect of host plant architecture on the distribution and survival of Aphidius nigripes (Hymenoptera: Aphidiidae). Redia 74 (3) Appendix: 251–258

    Google Scholar 

  • Brodeur J, McNeil JN (1992) Host behaviour modification by the endoparasitoid Aphidius nigripes: a strategy to reduce hyperparasitism. Ecol Entomol 17:97–104

    Google Scholar 

  • Campbell A (1974) Seasonal changes in abundance of the pea aphid and its associated parasites in the southern interior of British Columbia. Ph. D. thesis, Simon Fraser University, Burnaby, BC, Canada

  • Campbell A, Mackauer M (1975) The effect of parasitism by Aphidius smithi (Hymenoptera: Aphidiidae) on reproduction and population growth of the pea aphid (Homoptera: Aphididae). Can Entomol 107:919–926

    Google Scholar 

  • Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438

    Google Scholar 

  • Carver M (1989) Biological control of aphids. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control. (World crop pests, vol 2C) Elsevier, Amsterdam, pp 141–165

    Google Scholar 

  • Charnov EL (1976) Optimal foraging: the marginal value theorem. Theor Popul Biol 9:129–136

    Google Scholar 

  • Chesson PL, Murdoch WW (1986) Aggregation of risk: relationships among host-parasitoid models. Am Nat 127:696–715

    Google Scholar 

  • Chow A, Mackauer M (1991) Patterns of host selection by four species of aphidiid (Hymenoptera) parasitoids: influence of host switching. Ecol Entomol 16:403–410

    Google Scholar 

  • Cloutier C, LĂ©vesque CA, Eaves DM, Mackauer M (1991) Maternal adjustment of sex ratio in response to host size in the aphid parasitoid Ephedrus californicus. Can J Zool 69: 1489–1495

    Google Scholar 

  • Cohen MB, Mackauer M (1986) Lupine aphid, Macrosiphum albifrons (Homoptera: Aphididae): distribution and hymenopterous parasites in British Columbia. Environ Entomol 15:719–722

    Google Scholar 

  • Cohen MB, Mackauer M (1987) Intrinsic rate of increase and temperature coefficients of the aphid parasite Ephedrus californicus (Hymenoptera: Aphidiidae). Can Entomol 119: 231–237

    Google Scholar 

  • Collins MD, Ward SA, Dixon AFG (1981) Handling time and the functional response of Aphelinus thomsoni, a predator and parasite of the aphid Drepanosiphum platanoidis. J Anim Ecol 50:479–487

    Google Scholar 

  • Cook RM, Hubbard SF (1977) Adaptive search strategies in insect parasites. J Anim Ecol 46: 115–125

    Google Scholar 

  • Dean GJ, Jones MG, Powell W (1981) The relative abundance of the hymenopterous parasites attacking Metopolophium dirhodum (Walker) and Macrosiphum avenae (F.) (Hem., Aphididae). Bull Entomol Res 71: 307–315

    Google Scholar 

  • Dempster JP (1983) The natural control of subpopulations of butterflies and moths. Biol Rev 58:461–481

    Google Scholar 

  • Dransfield RD (1979) Aspects of host-parasitoid interactions of two aphid parasitoids, Aphidius urticae (Haliday) and Aphidius uzbeckistanicus (Luzhetski) (Hymenoptera, Aphidiidae). Ecol Entomol 4: 307–316

    Google Scholar 

  • Farrell JA, Stufkens MW (1990) The impact of Aphidius rhopalosiphi (Hymenoptera: Aphidiidae) on populations of the rose grain aphid, Metopolophium dirhodum (Hemiptera: Aphididae) on cereals in Canterbury, New Zealand. Bull Entomol Res 80:377–383

    Google Scholar 

  • Force DC, Messenger PS (1964) Fecundity, reproductive rates, and innate capacity for increase of three parasites of Therioaphis maculata (Buckton). Ecology 45:706–715

    Google Scholar 

  • Frazer BD, Bosch R van den (1973) Biological control of the walnut aphid in California: the interrelationship of the aphid and its parasite. Environ Entomol 2:561–568

    Google Scholar 

  • Freeland WJ (1986) Arms races and covenants: the evolution of parasite communities. In: Kikkawa J, Anderson DJ (eds) Community ecology: pattern and process. Blackwell, London, pp 289–308

    Google Scholar 

  • Futuyma DJ, Slatkin M (eds) (1983) Coevolution. Sinauer, Sunderland, Mass

    Google Scholar 

  • Gardner SM, Dixon AFG (1985) Plant structure and the foraging success of Aphidius rhopalosiphi (Hymenoptera: Aphidiidae). Ecol Entomol 10:171–179

    Google Scholar 

  • Gerling DH, Roitberg BD, Mackauer M (1990) Instar-specific defense of the pea aphid, Acyrthosiphon pisum: influence on oviposition success of the parasite Aphelinus asychis (Hymenoptera: Aphelinidae). J Insect Behav 3:501–514

    Google Scholar 

  • Gilbert N, Gutierrez AP (1973) A plant-aphid-parasite relationship. J Anim Ecol 42:323–340

    Google Scholar 

  • Green RF (1984) Stopping rules for optimal foragers. Am Nat 123:30–40

    Google Scholar 

  • Hafez M (1961) Seasonal fluctuations of population density of the cabbage aphid, Brevicoryne brassicae (L.) in the Netherlands, and the role of its parasite, Aphidius (Diaeretiella) rapae (Curtis). Tijdschr Plantenziekt 67:445–548

    Google Scholar 

  • Hagen KS, Bosch R van den (1968) Impact of pathogens, parasites, and predators on aphids. Annu Rev Entomol 13:325–384

    Google Scholar 

  • Hassell MP (1978) The dynamics of arthropod predator-prey systems. Monographs in population biology, 13. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Hassell MP (1985) Insect natural enemies as regulating factors. J Anim Ecol 54:323–334

    Google Scholar 

  • Hassell MP (1986) Parasitoids and population regulation. In: Waage J, Greathead D (eds) Insect parasitoids. Academic Press, London, pp 201–224

    Google Scholar 

  • Hassell MP, Waage JK (1984) Host-parasitoid population interactions. Annu Rev Entomol 29:89–114

    Google Scholar 

  • Hawkins BA (1992) Parasitoid-host food webs and donor control. Oikos 65:159–162

    Google Scholar 

  • Henter H (1992) Genetic variation within a wasp population in the ability to parasitize resistant aphid hosts. IX International Entomophagous Insect Workshop, 3–7 May 1992, Hawk's Cay, Florida

  • Höller C (1991) Movement away from the feeding site in parasitized aphids: host suicide or an attempt by the parasitoid to escape hyperparasitism? In: Polgár L, Chambers RJ, Dixon AFG, Hodek I (eds) Behaviour and impact of Aphidophaga. SPB, The Hague, pp 45–49

    Google Scholar 

  • Hofsvang T (1991) Fecundity of aphid parasitoids in the family Aphidiidae (Hymenoptera). In: Polgár L, Chambers RJ, Dixon AFG, Hodek I (eds) Behaviour and impact of Aphidophaga. SPB, The Hague, pp 41–44

    Google Scholar 

  • Horn DJ (1984) Vegetational complexity and parasitism of green peach aphids (Myzus persicae (Sulzer) (Homoptera: Aphididae)) on collards. J N Y Entomol Soc 92:19–26

    Google Scholar 

  • Horn DJ (1989) Secondary parasitism and population dynamics of aphid parasitoids (Hymenoptera: Aphidiidae). J Kans Entomol Soc 62:203–210

    Google Scholar 

  • Houston AI, McNamara JM (1986) The influence of mortality on the behaviour that maximizes reproductive success in a patchy environment. Oikos 47:267–274

    Google Scholar 

  • Huffaker CB, Simmonds FJ, Laing JE (1976) The theoretical and empirical basis of biological control. In: Huffaker CB, Messenger PS (eds) Theory and practice of biological control. Academic Press, New York, pp 41–78

    Google Scholar 

  • Hughes RD (1989) Biological control in the open field. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control. (World crop pests, vol 2C) Elsevier, Amsterdam, pp 167–198

    Google Scholar 

  • Hughes RD, Woolcock LT, Roberts JA, Hughes MA (1987) Biological control of the spotted alfalfa aphid, Therioaphis trifolii f. maculata, on lucerne crops in Australia by the introduced parasitic hymenopteran Trioxys complanatus. J Appl Ecol 24: 515–537

    Google Scholar 

  • Hughes RD, Woolcock LT, Hughes MA (1992) Laboratory evaluation of parasitic hymenoptera used in attempts to biologically control aphid pests of crops in Australia. Entomol Exp Appl 63:177–185

    Google Scholar 

  • Kambhampati S, Mackauer M (1989) Multivariate assessment of inter- and intraspecific variation in performance criteria of several pea aphid parasites (Hymenoptera: Aphidiidae). Ann Entomol Soc Am 82:314–324

    Google Scholar 

  • Kfir R, Kirsten F (1991) Seasonal abundance of Cinara cronartii (Homoptera: Aphididae) and the effect of an introduced parasite, Pauesia sp. (Hymenoptera: Aphidiidae). J Econ Entomol 84:76–82

    Google Scholar 

  • Klingauf F (1967) Abwebr- und Meidereaktionen von Blattläusen (Aphididae) bei Bedrohung durch Räuber und Parasiten. Z Angew Entomol 60:269–317

    Google Scholar 

  • KouamĂ© KL, Mackauer M (1991) Influence of aphid size, age and behaviour on host choice by the parasitoid wasp Ephedrus californicus: a test of host-size models. Oecologia 88:197–203

    Google Scholar 

  • Levine L, Sullivan DJ (1983) Intraspecific tertiary parasitoidism in Asaphes lucens (Hymenoptera: Pteromalidae), an aphid hyperparasitoid. Can Entomol 115:1653–1658

    Google Scholar 

  • Li C, Roitberg BD, Mackauer M (1992) The search pattern of a parasitoid wasp, Aphelinus asychis, for its host. Oikos 65:207–212

    Google Scholar 

  • Li C, Roitberg BD, Mackauer M (1993) Patch residence time and parasitism of Aphelinus asychis: a simulation model. Ecol Model (in press)

  • Lincicome DR (1971) The goodness of parasitism: a new hypothesis. In: Cheng TC (ed) Aspects of the biology of symbiosis. University Park Press, Baltimore, pp 139–227

    Google Scholar 

  • Liu SS (1985) Aspects of the numerical and functional responses of the aphid parasite, Aphidius sonchi, in the laboratory. Entomol Exp Appl 37:247–256

    Google Scholar 

  • Liu SS, Morton R, Hughes RD (1984) Oviposition preferences of a hymenopterous parasite for certain instars of its aphid host. Entomol Exp Appl 35:249–254

    Google Scholar 

  • Lopez ER, Van Driesche RG, Elkinton JS (1990) Rates of parasitism by Diaeretiella rapae (Hymenoptera: Braconidae) for cabbage aphids (Homoptera: Aphididae) in and outside of colonies: Why do they differ? J Kans Entomol Soc 63:158–165

    Google Scholar 

  • Luck R, Messenger PS, Barbieri JF (1981) The influence of hyperparasitism on the performance of biological control agents. In: Rosen D (ed) The role of hyperparasitism in biological control: a symposium. Division of Agricultural Sciences, Univ Calif Publ 4103:34–42

  • Mackauer M (1965) Parasitological data as an aid in aphid classification. Can Entomol 97:1016–1024

    Google Scholar 

  • Mackauer M (1973) Host selection and host suitability in Aphidius smithi (Hymenoptera: Aphidiidae). In: Lowe AD (ed) Perspectives in aphid biology. Bull Entomol Soc N Z 2: 20–29

  • Mackauer M (1983) Quantitative assessment of Aphidius smithi (Hymenoptera: Aphidiidae): fecundity, intrinsic rate of increase, and functional response. Can Entomol 115:399–415

    Google Scholar 

  • Mackauer M (1990) Host discrimination and larval competition in solitary endoparasitoids. In: Mackauer M, Ehler LE, Roland J (eds) Critical issues in biological control. Intercept, Andover, Hants, pp 41–62

    Google Scholar 

  • Mackauer M, Chow FJ (1986) Parasites and parasite impact on aphid populations. In: McLean GD, Garret RG, Ruesink WG (eds) Plant virus epidemics: monitoring, modelling and predicting outbreaks. Academic Press, Sydney, pp 95–117

    Google Scholar 

  • Mackauer M, Chow FJ (1990) The effect of stinging: aphidiid parasitoids (Hymenoptera) “prefer” pseudoparasitized pea aphids. Mitt Schweiz Entomol Ges 63:309–315

    Google Scholar 

  • Mackauer M, Kambhampati S (1988) Parasitism of aphid embryos by Aphidius smithi: some effects of extremely small host size. Entomol Exp Appl 49:167–173

    Google Scholar 

  • Mackauer M, Sequeira R (1993) Patterns of development in insect parasites. In: Beckage ME, Thompson SN, Federici BA (eds) Parasites and pathogens of insects, vol 1. Academic Press, Orlando, pp 1–23

    Google Scholar 

  • Mackauer M, StarĂ˝ P (1967) World Aphidiidae (Hym. Ichneumonoidea). Le François, Paris

    Google Scholar 

  • Mangel M (1990) Dynamic information in uncertain and changing worlds. J Theor Biol 146:317–332

    Google Scholar 

  • Matejko I, Sullivan DJ (1979) Bionomics and behavior of Alloxysta megourae, an aphid hyperparasitoid (Hymenoptera: Cynipidae). J N Y Entomol Soc 87:275–282

    Google Scholar 

  • Matejko I, Sullivan DJ (1984) Interspecific tertiary parasitoidism between two aphid hyperparasitoids: Dendrocerus carpenteri and Alloxysta megourae (Hymenoptera: Megaspilidae and Cynipidae). J Wash Acad Sci 74:31–38

    Google Scholar 

  • May RM, Hassell MP (1988) Population dynamics and biological control. In: Wood RKS, Way MJ (eds) Biological control of pests, pathogens and weeds: developments and prospects. Royal Society, London, pp 19–57

    Google Scholar 

  • Messenger PS (1970) Bioclimatic inputs to biological control and pest management programs. In: Rabb RL, Guthrie FE (eds) Concepts of pest management. North Carolina State University, Raleigh, NC, pp 84–102

    Google Scholar 

  • Mesterton-Gibbons M (1988) On the optimal compromise for a dispersing parasitoid. J Math Biol 26:375–385

    Google Scholar 

  • Michalakis Y, Olivieri I, Renaud F, Raymond M (1992) Pleiotropic action of parasites: how to be good for the host. Trends Ecol Evol 7:59–62

    Google Scholar 

  • Murdoch WM (1990) The relevance of pest-enemy models to biological control. In: Mackauer M, Ehler LE, Roland J (eds) Critical issues in biological control. Intercept, Andover, Hants, pp 1–24

    Google Scholar 

  • Nault LR, Montgomery ME, Bowers WS (1976) Ant-aphid association: role of aphid alarm pheromones. Science 192:1349–1351

    Google Scholar 

  • Nowierski RM (1979) The field ecology of the walnut aphid, Chromaphis juglandicola (Homoptera: Aphididae) and its introduced parasite, Trioxys pallidus (Hymenoptera: Aphidiidae): a qualitative and quantitative assessment of population regulation. Ph. D. thesis, University of California, Berkeley

  • Paetzold G, Vater D (1967) Populationsdynamische Untersuchungen an den Parasiten und Hyperparasiten von Brevicoryne brassicae (L.) (Homoptera, Aphididae). Acta Entomol Bohemoslov 64:83–90

    Google Scholar 

  • Paetzold G, Vater D (1969) Untersuchungen zum EinfluĂź der Hyperparasiten auf die Populationsdynamik von Diaeretiella rapea (M'Intosh) (Hymenoptera: Aphidiidae). Ber 10 Wanderver Deutsch Entomol, Dresden 1965, 80:365–375

    Google Scholar 

  • Pimentel D (1968) Population regulation and genetic feedback. Science 159:1432–1437

    Google Scholar 

  • Price PW, Westoby M, Rice B (1988) Parasite-mediated competition: some predictions and tests. Am Nat 131:544–555

    Google Scholar 

  • Roitberg BD (1990) Variation in behaviour of individual parasitic insects: bane or boon? In: Mackauer M, Ehler LE, Roland J (eds) Critical issues in biological control. Intercept, Andover, Hants, pp 25–39

    Google Scholar 

  • Sequeira R, Mackauer M (1987) Host instar preference of the aphid parasite Praon pequodorum (Hymenoptera: Aphidiidae). Entomol Gen 12:259–265

    Google Scholar 

  • Sequeira R, Mackauer M (1992) Nutritional ecology of an insect host-parasitoid association: the pea aphid — Aphidius ervi system. Ecology 73:183–189

    Google Scholar 

  • Shirota Y, Carter N, Rabbinge R, Ankersmit GW (1983) Biology of Aphidius rhopalosiphi, a parasitoid of cereal aphids. Entomol Exp Appl 34:27–34

    Google Scholar 

  • Singh R, Srivastava PN (1989) Life-table studies of an aphid hyperparasitoid Alloxysta pleuralis (Cameron) (Hymenoptera: Alloxystidae). J Appl Entomol 107:351–356

    Google Scholar 

  • Slobodkin LB (1968) Toward a predictive theory of evolution. In: Lewontin RC (ed) Population biology and evolution. Syracuse University Press, Syracuse, NY, pp 187–205

    Google Scholar 

  • Stadler B (1989) Untersuchungen zur Populationsökologie von Uroleucon jaceae (L.) (Homoptera, Aphididae) an Centaureen in Oberfranken. Diplomarbeit, University of Bayreuth

  • Stadler B, Völkl W (1991) Foraging patterns of two aphid parasitoids, Lysiphlebus testaceipes and Aphidius colemani on banana. Entomol Exp Appl 58:221–229

    Google Scholar 

  • StarĂ˝ P (1970) Biology of aphid parasites. Junk, The Hague

    Google Scholar 

  • StarĂ˝ P (1988) Aphidiidae. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control. (World crop pests, vol 2B) Elsevier, Amsterdam, pp 171–184

    Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Stiling PD (1987) The frequency of density-dependence in insect host-parasitoid systems. Ecology 68:844–856

    Google Scholar 

  • Stiling PD (1988) Density dependent processes and key factors in animal populations. J Anim Ecol 57:581–593

    Google Scholar 

  • Strong DJ (1988) Parasitoid theory: from aggregation to dispersal. Trends Ecol Evol 3:277–280

    Google Scholar 

  • Sullivan DJ (1987) Insect hyperparasitism. Annu Rev Entomol 32:49–70

    Google Scholar 

  • Sullivan DJ (1988) Hyperparasites. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control. (World crop pest, vol 2B) Elsevier, Amsterdam, pp 189–203

    Google Scholar 

  • Sullivan DJ, Bosch R van den (1971) Field ecology of the primary parasites and hyperparasites of the potato aphid, Macrosiphum euphorbiae, in the east San Francisco Bay area. Ann Entomol Soc Am 64:389–394

    Google Scholar 

  • Turchin P, Kareiva P (1989) Aggregation in Aphis varians: an effective strategy for reducing predation risk. Ecology 70:1008–1016

    Google Scholar 

  • Vickerman GP, Wratten SD (1979) The biology and pest status of cereal aphids (Hemiptera: Aphididae) in Europe: a review. Bull Entomol Res 69:1–32

    Google Scholar 

  • Völkl W (1990) Fortpflanzungsstrategien bei Blattlausparasitoiden: Konsequenzen ihrer Interaktionen mit Wirten und Ameisen. Ph.D. thesis, University of Bayreuth

  • Völkl W (1991) Species-specific larval instar preferences and aphid defense behaviour in three parasitoids of Aphis fabae. In: Polgár L, Chambers RJ, Dixon AFG, Hodek I (eds) Behaviour and impact of Aphidophaga. SPB, The Hague, pp 73–78

    Google Scholar 

  • Völkl W (1992) Aphids or their parasitoids: who actually benefits from ant-attendance? J Anim Ecol 61:273–281

    Google Scholar 

  • Völkl W, Mackauer M (1993) Interactions between ants attending Aphis fabae spp. cirsiiacanthoidis on thistles and foraging parasitoid wasps. J Insect Behav 6:301–312

    Google Scholar 

  • Waage JK (1979) Foraging for patchily distributed hosts by the parasitoid, Nemeritis canescens. J Anim Ecol 48:353–371

    Google Scholar 

  • Waage JK, Hassell MP (1982) Parasitoids as biological control agents — a fundamental approach. Parasitology 84:241–268

    Google Scholar 

  • Walde SJ, Murdoch WW (1988) Spatial density dependence in parasitoids. Annu Rev Entomol 33:441–466

    Google Scholar 

  • Walker GP, Cameron PJ (1981) The biology of Dendrocerus carpenteri (Hymenoptera: Ceraphronidae), a parasite of Aphidius species, and field observations of Dendrocerus species as hyperparasites of Acyrthosiphon species. N Z J Zool 8:531–538

    Google Scholar 

  • WeiĂźer W (1991) Das Eiablageverhalten von Blattlausparasitoiden (Hymenoptera: Aphidiidae): Welchen EinfluĂź haben Habitatfaktoren und das Parasitoidenalter? Diplomarbeit, University of Bayreuth

  • Wilson CG, Swincer DE (1984) Hyperparasitism of Therioaphis trifolii f. maculata (Homoptera: Aphididae) in South Australia. J Aust Entomol Soc 23:47–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackauer, M., Völkl, W. Regulation of aphid populations by aphidiid wasps: does parasitoid foraging behaviour or hyperparasitism limit impact?. Oecologia 94, 339–350 (1993). https://doi.org/10.1007/BF00317107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00317107

Key words

Navigation