Skip to main content
Log in

Differences in orientation and receptive field position between supra- and infragranular cells of cat striate cortex and their possible functional implications

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

On the postlateral gyrus of the cat striate cortex the cells' preferred orientation and the location of their receptive fields was measured as a function of cortical depth in penetrations as parallel as possible to the radiating fibres. In most penetrations the majority of infragranular cells showed orientation preferences 45°–90° different from the preferred orientations of supragranular cells. In addition, aggregate receptive fields from the same eye of supra- and infragranular cells were spatially shifted against each other. Using different columnar models these results are discussed in terms of spatial contrast enhancement for two parallel mechanisms in upper and lower layers, determined for pattern discrimination and movement detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albus, K.:14C-deoxyglucose mapping of orientation subunits in the cat's visual cortical areas. Exp. Brain Res.37, 609–613 (1979)

    Google Scholar 

  • Albus, K., Donate-Olivier, F.: Cells of origin of the occipitopontine projection in the cat: functional properties and intracortical location. Exp. Brain Res.28, 167–174 (1977)

    Google Scholar 

  • Baker, J., Gibson, A., Glickstein, M., Stein, J.: Visual cells in the pontine nuclei. J. Physiol. (London)255, 415–433 (1976)

    Google Scholar 

  • Barlow, H.B., Blakemore, C., Pettigrew, J.D.: The neuronal mechanism of binocular depth discrimination. J. Physiol. (London)193, 327–342 (1967)

    Google Scholar 

  • Bauer, R.: A high probability of an orientation shift between layers 4 and 5 in central parts of the cat striate cortex. Exp. Brain Res.48, 245–255 (1982)

    Google Scholar 

  • Bauer, R., Dow, B.M., Vautin, R.G.: Laminar distribution of preferred orientations in foveal striate cortex of the monkey. Exp. Brain Res.41, 54–60 (1980)

    Google Scholar 

  • Bauer, R., Dow, B.M., Snyder, A.Z., Vautin, R.G.: Orientation shift between upper and lower layers in monkey visual cortex. Exp. Brain Res.50, 133–145 (1983)

    Google Scholar 

  • Bishop, P.O., Burke, W., Davis, R.: Single unit recording from antidromically activated optic radiation neurons. J. Physiol. (London)162, 432–450 (1962)

    Google Scholar 

  • Brodal, P.: The corticopontine projection from the visual cortex in the cat. I. The total projection from area 17. Brain Res.39, 297–317 (1972)

    Google Scholar 

  • Creutzfeldt, O., Innocenti, G.M., Brooks, D.: Vertical organization in the visual cortex (area 17) in the cat. Exp. Brain Res.21, 315–336 (1974)

    Google Scholar 

  • Dow, B.M., Snyder, A.Z., Vautin, R.G., Bauer, R.: Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp. Brain Res.44, 213–228 (1981)

    Google Scholar 

  • Ferster, D., Le Vay, S.: The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J. Comp. Neurol.182, 923–944 (1978)

    Google Scholar 

  • Gilbert, C.D.: Laminar differences in receptive field properties in cat primary visual cortex. J. Physiol.268, 391–421 (1977)

    Google Scholar 

  • Gilbert, C.D., Kelly, J.P.: The projections of cells in different layers of the cat's visual cortex. J. Comp. Neurol.163, 81–106 (1975)

    Google Scholar 

  • Gilbert, C.D., Wiesel, T.N.: Laminar specialization and intracortical connections in cat primary visual cortex. In: The organization of the cerebral cortex, Schmitt, F.O., Worden, F.G., Adelman, G., Dennis, F.G. (eds.), pp. 163–191. Cambridge, MA, London: MIT Press 1981

    Google Scholar 

  • Hammond, P., MacKay, D.M.: Differential responsiveness of simple and complex cells in cat striate cortex to visual texture. Exp. Brain Res.30, 275–296 (1977)

    Google Scholar 

  • Hoffmann, K.P., Schoppmann, A.: A quantitative analysis of the direction specific response of neurons in the cat's nucleus of the optic tract. Exp. Brain Res.42, 146–157 (1981)

    Google Scholar 

  • Hollaender, H.: On the origins of the corticotectal projections in the cat. Exp. Brain Res.21, 430–440 (1974)

    Google Scholar 

  • Hornung, J.P., McGuire, B.A., Gilbert, C.D., Wiesel, T.N.: Layer 6 cells selectively innervate inhibitory interneurons in layer 4 of cat striate cortex. Neurosci. Lett. Suppl.14, 171 (1983)

    Google Scholar 

  • Horton, J.C., Hubel, D.H.: Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of the macaque monkey. Nature292, 762–764 (1981)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. J. Physiol. (London)160, 106–157 (1962)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Shape and arrangement of columns in cat's striate cortex. J. Physiol. (London)165, 559–568 (1963)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (London)195, 215–243 (1968)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Physiol. (London)158, 267–294 (1974)

    Google Scholar 

  • Humphrey, A.L., Hendrickson, A.E.: Radial zones of high metabolic activity in squirrel monkey striate cortex. Soc. Neurosci. Abstr.6, 315 (1980)

    Google Scholar 

  • Humphrey, A.L., Hendrickson, A.E.: Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkeys. J. Comp. Neurol.3, 345–358 (1983)

    Google Scholar 

  • Kawamura, S., Sprague, J.M., Niimi, K.: Corticofugal projections from the visual cortices to the thalamus, pretectum, and superior colliculus in the cat. J. Comp. Neurol.158, 339–362 (1974)

    Google Scholar 

  • Krüger, J., Bach, M.: Independent systems of orientation columns in upper and lower layers of monkey visual cortex. Neurosci. Lett.31, 225–230 (1982)

    Google Scholar 

  • Le Vay, S., Gilbert, C.D.: Laminar patterns of geniculo-cortical projections in the cat. Brain Res.113, 1–19 (1976)

    Google Scholar 

  • Leventhal, A.G., Hirsch, H.V.B.: Receptive field properties of neurons in different laminae of the visual cortex of the cat. J. Neurophysiol.41, 948–962 (1978)

    Google Scholar 

  • Lund, J.S., Henry, G.H., Macqueen, C.L., Harvey, A.R.: Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey. J. Comp. Neurol.184, 599–618 (1979)

    Google Scholar 

  • Magalhaes-Castro, A.A., Saraiva, P.E.S., Magelhaes-Castro, B.: Identification of corticotectal cells of the visual cortex of cats by means of horseradish peroxidase. Brain Res.83, 474–479 (1975)

    Google Scholar 

  • Movshon, J.A., Thomson, I.D., Tolhurst, D.J.: Spatial and temporal contrast sensitivity of neurons in area 17 and 18 of the cat's visual cortex. J. Physiol.283, 101–120 (1978)

    Google Scholar 

  • Otsuka, R., Hassler, R.: Über Aufbau und Gliederung der corticalen Sehsphäre bei der Katze. Arch. Psychiatr. Neurol.203, 212–234 (1962)

    Google Scholar 

  • Palmer, L.A., Rosenquist, A.C.: Visual receptive fields of single striate cortical units projecting to the superior colliculus in the cat. Brain Res.67, 27–42 (1974)

    Google Scholar 

  • Rauschecker, J.P.: Monocular strobe rearing of kittens: further evidence for Hebb synapses in teh visual cortex. J. Neurophysiol. (in preparation)

  • Rosenquist, A.C., Edwards, S.B., Palmer, L.A.: An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat. Brain Res.80, 71–93 (1975)

    Google Scholar 

  • Rossignol, S., Colonnier, M.: A light light microscopic study of degeneration patterns in cat cortex after lesions of the lateral geniculate nucleus. Vision Res. Suppl.3, 329–338 (1971)

    Google Scholar 

  • Schopmann, A.: Projections from areas 17 and 18 of the visual cortex to the nucleus of the optic tract. Brain Res.223, 1–17 (1980)

    Google Scholar 

  • Schoppmann, A., Stryker, M.P.: Physiological evidence that the 2-deoxyglucose method reveals orientation columns in cat visual cortex. Nature293, 574–576 (1981)

    Google Scholar 

  • Singer, W.: Topographic organization of orientation columns in the cat visual cortex. A deoxyglucose study. Exp. Brain Res.44, 431–436 (1981)

    Google Scholar 

  • Somogyi, P., Cowey, A.: Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J. Comp. Neurol.195, 547–566 (1981)

    Google Scholar 

  • Spatz, W.B., Tigges, J., Tigges, M.: Subcortical projections, cortical associations and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri). J. Comp. Neurol.140, 155–174 (1970)

    Google Scholar 

  • Toyama, K., Matsunami, K., Ohno, T.: Antidromic identification of association, comissural, and corticofugal efferent cells in the cat visual visual cortex. Brain Res.14, 513–517 (1969)

    Google Scholar 

  • Toyama, K., Matsunami, K., Ohno, T., Takashiki, S.: An intracellular study of neuronal organization in the visual cortex. Exp. Brain Res.21, 45–66 (1974)

    Google Scholar 

  • Tusa, R.J., Palmer, L.A., Rosenquist, A.C.: The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neurol.177, 213–236 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, R. Differences in orientation and receptive field position between supra- and infragranular cells of cat striate cortex and their possible functional implications. Biol. Cybernetics 49, 137–148 (1983). https://doi.org/10.1007/BF00320394

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00320394

Keywords

Navigation