Skip to main content
Log in

Allocyclic segments of chromosomes and the structural heterozygosity that they reveal

  • Published:
Chromosoma Aims and scope Submit manuscript

Summary

  1. 1.

    Low temperature treatment reveals allocyclic segments in Fritillaria recurva (n=12), Tulbaghia pulchella (n=6), and in six species of Cestrum (n=8). These segments, which are underspiralised at mitotic metaphase, correspond to the interphase chromocentres and to the precociously condensed segments at pachytene.

  2. 2.

    The chromosomes of F. recurva contain H-segments in 11 of the 12 pairs. The patterns reveal heterogeneity in 10 of these in the 3 individuals considered, which were heterozygous for 8, 7 and 6 chromosome pairs. The close relationship of F. recurva, F. lanceolata and F. falcata is reflected in the parallel polymorphism of the heterochromatin patterns.

  3. 3.

    The plant of T. pulchella was heterozygous for the H-pattern in 5 pairs of chromosomes. The sixth, the nucleolar chromosome, contained no heterochromatin. The H-pattern was the same in the tetraploid cells which formed up to 80% of all divisions in lateral roots.

  4. 4.

    H-segments were present in 7 pairs in Cestrum elegans, and all 8 pairs in C. parqui and an unidentified Cestrum species. These plants were heterozygous for 4, 1 and 3 pairs respectively. No clear parallel polymorphism was detected in the H-patterns, but single chromosomes showed similarities. An attempt to induce differential contraction by means of chloramphenicol was unsuccessful, the effect being to produce colchicine-type metaphases.

  5. 5.

    Tulbaghia alliacea (n=6) and Hyacinthus litwinowii (n=9), newly described, are both heterozygous for a single segment with a previously unknown type of allocycly. This segment is normally uncontracted throughout the mitotic cycle and becomes fully spiralised only during division after the inhibition of anaphase by low temperature or chemical treatment. This segment is attached terminally to the secondary constriction of only one of the nucleolar chromosomes in each plant.

  6. 6.

    In Fritillaria the segments are mostly proximal and the chromocentres fuse to a considerable extent. In Tulbaghia the segments are terminal and there is little chromocentre fusion. Cestrum elegans, with segments dispersed along the chromosomes, is intermediate in this respect. Fusion appears to be controlled by the proximity in the telophase nucleus, in turn influenced by the position of the segments in the chromosomes.

  7. 7.

    In Fritillaria, Cestrum and Tulbaghia all or most chiasmata are formed near to the centromere. In Fritillaria and Cestrum, where this distribution overlaps that of the heterochromatin, the H-segments are interrupted by small regions of euchromatin. In Tulbaghia, where heterochromatin and chiasmata are localised at opposite ends of the chromosome arms, the segments are entire. It is suggested that crossingover in adjacent euchromatin causes small rearrangements of H-segments.

  8. 8.

    Chromosome maps showing the distribution of H-segments reveal structural heterogeneity within the species and corresponding heterozygosity within the individuals. Heterogeneity of H-patterns involves variation in the size and position as well as the number of H-segments. The frequency of heterozygosity in an individual does not necessarily increase with the number of segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, P. C.: Differential chromosome segments in eight species of Trillium. Bull. Torrey bot. Club 85, 201–214 (1958).

    Google Scholar 

  • Bhattacharya, N. K., and B. C. Jenkins: Karyotype analysis and chromosome designations for Secale cereale L. “Dakold”. Canad. J. Genet. Cytol. 2, 268–277 (1960).

    Google Scholar 

  • Boothroyd, E. R.: Chromosome studies on three Canadian populations of Atlantic Salmon, Salmo salar L. Canad. J. Genet. Cytol. 1, 161–172 (1959).

    Google Scholar 

  • Burnham, C. R.: An interchange in maize giving low sterility and chain configurations. Proc Nat. Acad. Sci (Wash.) 18, 434–440 (1932).

    Google Scholar 

  • Callan, H. G.: Heterochromatin in Triton. Proc. roy. Soc. B 130, 324–335 (1942).

    Google Scholar 

  • Darlington, C. D.: Polyploidy, crossing-over and heterochromatin in Paris. Ann. Bot. (Lond.), N.S. 5, 203–216 (1941).

    Google Scholar 

  • —, and L. F. La Cour: Differential reactivity of the chromosomes. Ann. Bot. (Lond.), N.S. 2, 615–626 (1938); - Nucleic acid starvation of chromosomes in Trillium. J. Genet. 40, 185–213 (1940); - The detection of inert genes. J. Hered. 52, 115–121 (1941)

    Google Scholar 

  • —, and G. W. Shaw: Parallel polymorphism in the heterochromatin of Trillium species. Heredity 13, 89–121 (1959).

    Google Scholar 

  • Flovik, K.: The somatic chromosomes of certain arctic species of the genus Ranunculus. Soc. Sci. Fenn. Comm. Biol. Series V 7, 1–18 (1936); - Cytological studies of Arctic grasses. Hereditas (Lund) 24, 265–376 (1938).

    Google Scholar 

  • Geitler, L.: Temperaturbedingte Ausbildung von Spezialsegmenten an Chromosomenenden. Chromosoma (Berl.) 1, 554–561 (1940).

    Google Scholar 

  • Haga, T.: Karyotypic polymorphism in Paris hexaphylla with special reference to its origin and to the meiotic chromosome behaviour. Cytologia (Tokyo) Fujii Jub. Vol., 681–700 (1937).

  • Heitz, E.: Chromosomenstruktur und Gene. Z. indukt. Abstamm.- u. Vererb.- Lehre 70, 402–447 (1935).

    Google Scholar 

  • Kurabayashi, M.: Differential reactivity of chromosomes in Trillium. J. Fac. Soc. Hokk. Imp. Univ., Ser. V 6, 233–248 (1952).

    Google Scholar 

  • La Cour, L. F.: Heterochromatin and the organisation of nucleoli in plants. Heredity 5, 37–50 (1951); - In “Fritillaries” by C. Beck. London: Faber & Faber 1953.

    Google Scholar 

  • Lesley, M. M.: The relation between satellite size and nucleolus size in three races of Solanum lycopersicum. Genetics 23, 485–493 (1938).

    Google Scholar 

  • Levan, A.: Studies on the meiotic mechanism of haploid rye. Hereditas (Lund) 28, 177–211 (1942).

    Google Scholar 

  • McLeish, J.: Heterochromatin segments in Vicia faba. Ann. Rep. John Innes Hort. Inst. (Bayfordbury) 47, 31 (1953).

    Google Scholar 

  • Mechelke, F.: Temperaturbedingte Chromosomensegmentierung bei Sommer- und Wintergersten. Kulturpfl. 3, 127–136 (1955).

    Google Scholar 

  • Meurman, O., and E. Therman: Studies on the chromosome morphology and structural hybridity in the genus Clematis. Cytologia (Tokyo) 10, 1–14 (1939).

    Google Scholar 

  • Moutschen-Dahmen, J., and M. Moutschen-Dahmen: Sur l'évolution des lésions causées par la 8-ethoxy caffeine chez Hordeum sativum et chez Vicia faba. Hereditas (Lund) 44, 18–36 (1958).

    Google Scholar 

  • Nawaschin, M.: On the chromatin deficiency in Crepis leading to partial sterility and to forming of a heteromorphic chromosome pair. Z. Indukt. Abstamm.- u. Vererb.-Lehre 63, 218–223 (1933).

    Google Scholar 

  • Nawaschin, S.: Zellkern dimorphismus der Galtonia candicans Des. und einiger verwandten Monokotylen. Ber. dtsch. bot. Ges. 45, 415–428 (1927).

    Google Scholar 

  • Okuno, S.: Karyological studies on some species of Lobelia. Cytologia (Tokyo) Fujii Jub. Vol., 897–902 (1937).

  • Philp, J., and C. L. Huskins: The cytology of Matihiola incana R. Br. especially in relation to the inheritance of double flowers. J. Genet. 24, 359–404 (1931).

    Google Scholar 

  • Pontecorvo, G.: Structure of heterochromatin. Nature (Lond.) 153, 365–371 (1944).

    Google Scholar 

  • Ranken, G.: Zytologische Untersuchungen an einigen wirtschaftlich wertvollen Wiesengräsern. Acta Agralia Fenn. 29, 1–97 (1934).

    Google Scholar 

  • Rao, Y. S.: Further studies on Scilla hohenackeri Firch and Avery. Curr. Sci. 23, 94 (1954).

    Google Scholar 

  • Rees, H.: Genotypic control of chromosome behaviour in rye, I. Inbred lines. Heredity 9, 93–116 (1955).

    Google Scholar 

  • Sato, D.: Polymorphism of karyotypes in Galanthus with special reference to the SAT-chromosomes. Bot. Mag. (Tokyo) 51, 242–249 (1937); - A diploid plant with only one nucleolus and its bearing on the balance hypothesis of nucleolar chromosomes. Bot. Mag. (Tokyo) 55, 159–163 (1941); - Karyotype alterations and phyllogeny in Liliaceae and allied families. Jap. J. Bot. 12, 57–161 (1942).

    Google Scholar 

  • Sharma, A. K., and B. Varma: Study of the effects of chemicals on endosperm chromosomes of Cestrum diurnum Linn. Cytologia (Tokyo) 24, 498–506 (1959).

    Google Scholar 

  • Smith-White, S.: Cytological evolution in the Australian flora. Cold Spr. Harb. Symp. quant. Biol. 24, 273–289 (1959).

    Google Scholar 

  • Stow, I.: On the correlation between the satellite of chromosome and the leaf shape in Parideae from Hokkaido. J. Fac. Sci. Hokkaido Imp. Univ., Ser. V 4, 31–46 (1935).

    Google Scholar 

  • Svärdson, G.: Chromosome studies on Salmonidae. Rep. Swed. State Inst. Fresh Water Fishery Res. 23, 1–151 (1945).

    Google Scholar 

  • Swezy, O.: Somatic chromosome variation in the root tips in Crepis. Cytologia (Tokyo) 6, 266–269 (1935).

    Google Scholar 

  • Taylor, W. R.: Chromosome morphology in Fritillaria, Alstroemaria, Silphium and other genera. Amer. J. Bot. 13, 179–193 (1926).

    Google Scholar 

  • Tjio, J. H., and A. Levan: An interesting formation of one satellited chromosome in an individual of Allium cepa. An. Aula Dei. 4, 185–190 (1956).

    Google Scholar 

  • White, M. J. D.: Animal cytology and evolution. Cambridge: Cambridge University Press 1945.

    Google Scholar 

  • Wickbom, T.: Cytological studies of Dipnoi, Urodela, Anura and Emys. Hereditas (Lund) 31, 241–346 (1945).

    Google Scholar 

  • Wilson, G. B., and E. R. Boothroyd: Studies in differential reactivity. I. The rate and degree of differentiation in the somatic chromosomes in T. erectum. Canad. J. Res. 19, 400–412 (1941).

    Google Scholar 

  • Yamasaki, N.: Differentielle Färbung der somatischen Metaphasechromosomen von Cyprepedium debile. Chromosoma (Berl.) 7, 620–626 (1956).

    Google Scholar 

  • Zen, S.: Chiasma studies in structural hybrids. VI. Heteromorphic bivalent and reciprocal translocation in Allium fistulosum. Cytologia (Tokyo) 26, 67–73 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, A.F. Allocyclic segments of chromosomes and the structural heterozygosity that they reveal. Chromosoma 13, 545–576 (1962). https://doi.org/10.1007/BF00321164

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00321164

Keywords

Navigation