Skip to main content
Log in

Ontogeny of the calcium binding protein calbindin D-28k in the rat nervous system

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Calbindin D-28k immunoreactivity appeared at embryonal day 14 (E14) in the central nervous system as well as in the sensory organs and at E15 in the peripheral nervous system of the rat. At E14 the infundibular process of the diencephalon, cells of the posterior hypothalamus and of the dorsal thalamus were the only structures strongly immunostained in the brain, whereas neurons of the basal plate of the spinal cord, medulla oblongata and of the out-ermost layer of the cerebral cortex were only faintly labeled. Calbindin positive cerebellar Purkinje cells could be discerned at E15 together with a few cells in the hippocampus and in ganglia of the cranial nerves. At E19 various mesencephalic and metencephalic structures, spinal ganglion cells and basal ganglia displayed calbindin immunoreactive cells. The adult pattern of calbindin immunoreactivity (Garcia Segura et al. 1984) was reached before birth in most brain regions. In general, cells which displayed calbindin during brain development were also calbindin positive in the adult animal. Exceptions to this rule were cells of the deep nuclei of the cerebellum and non-neuronal cells which transiently expressed calbindin during development. Calbindin appeared in a given brain region almost invariably 1 or 2 days after the cessation of cell division and the beginning of neuronal migration and extension of neuronal processes. The calcium binding protein calbindin might influence these Ca2+-dependent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Axon

ac :

anterior commissure

Acq :

Aqueductus cerebri

AH :

Adenohypophysis

AMY :

Amygdala

aV :

anterior vermis

BG :

Basal Ganglia

BO :

Bulbus olfactorius

BPG :

basal pontine grey

C :

Cortex

CA :

Crista ampullaris

cer :

Cerebellum

CO :

otic cyst

CP :

choroid plexus

CPT :

Caudatoputamen

DCN :

deep cerebellar nuclei

DT :

dorsal thalamus

E :

foregut epithelium

ec :

external capsule

eml :

external medullary lamina

ENP :

entopeduncular nucleus

EP :

Ependym

ET :

Epithalamus

EY :

eye

F :

Fimbria

fo :

Fornix

fr :

Fasciculus retroflexus

GP :

Globus pallidus

gr :

granular laver of the cerebellum

Gsp :

ganglion spirale cochlea

HI :

Hippocampus

HYP :

Hypothalamus

I :

hippocampal interneurons

ic :

internal capsule

IE :

inner ear

IH :

inner hair cells of the cochlea

IO :

inferior olive

IS :

internal sulcus cells of the cochlea

LD :

laterodorsal thalamus

LV :

lateral ventricle

MB :

mamillary body

MH :

medial habenular nucleus

mol :

molecular layer of the cerebellum

mt :

mamillo-thalamic tract

mtt :

mamillo-tegmental tract

N :

nose

n :

olfactory nerve

NBM :

Nucleus basalis of Meynert

NE :

nose epithelium

NH :

Neurohypophysis

NRT:

Nucleus reticularis tegmenti pontis

ON :

olfactory nuclei

OR :

optic recess

PC :

posterior commissure

PG :

Epiphysis

PI :

inferior cerebellar peduncle

PS :

superior cerebellar peduncle

PU :

Purkinje cell

PV :

paraventricular hypothalamic nucleus

pV :

posterior vermis

PVP :

paraventricular thalamic nucleus

PY :

pyramidal cells of the hippocampus

RA :

Raphe nuclei

RE :

Nucleus reuniens

RH :

Nucleus rhomboideus

RN :

reticular nucleus

RP :

Rathke's pouch

sc :

spinal cord

SG :

substantia gelatinosa Rolandi

slm :

Stratum-lacunosum molecular

sm :

Stria medullaris

SN :

Substantia nigra

SO :

supraoptic nucleus

Sol :

Nucleus of the solitary tract

Tect :

Tectum

Teg :

Tegmentum

TG :

tegmental nucleus of Gudden

Tg :

tongue

TO :

tuberculum olfactorium

VT :

ventral thalamus

WH :

white matter

ZI :

Zona incerta

3 :

third ventricle

4 :

fourth ventricle

II N :

Nervus opticus

Vg :

Trigeminal ganglion

Vsp :

spinal trigeminal nucleus

VIIG :

Ganglion geniculi

VIIIG :

Ganglion vestibulare

IXGI :

interior ganglion of IX

IXGS :

superior ganglion of IX

XGI :

inferior ganglion of X

References

  • Altman J (1972b) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of molecular layer. J Comp Neurol 145:399–464

    Google Scholar 

  • Altman J, Bayer SA (1978a) Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. J Comp Neurol 182:945–972

    Google Scholar 

  • Altman J, Bayer SA (1978b) Prenatal development of the cerebellar system in the rat. J Comp Neurol 179:23–48

    Google Scholar 

  • Altman J, Bayer SA (1978c) Development of the diencephalon in the rat. III. Ontogeny of the specialized ventricular lining of the hypothalamic third ventricle. J Comp Neurol 182:995–1016

    Google Scholar 

  • Altman J, Bayer SA (1979) Development of the diencephalon in the rat. V: Thymidine radiographic observation on internuclear gradients in the thalamus. J Comp Neurol 188:473–500

    Google Scholar 

  • Altman J, Bayer SA (1980a) Development of the brainstem in the rat. I. Thymidine-radiographic study of the time of origin of neurons of the lower medulla. J Comp Neurol 194:1–36

    Google Scholar 

  • Altman J, Bayer SA (1980b) Development of the brain stem in the rat II. A Thymidine radiographic study of the time of origin of neurons of the upper medulla, excluding the vestibular and auditory nuclei. J Comp Neurol 194:37–65

    Google Scholar 

  • Altman J, Bayer SA (1980c) Development of the brain stem in the rat. III. Thymidine radioautographic study of the time of origin of neurons of the vestibular and auditory nuclei of the upper medulla. J Comp Neurol 194:877–904

    Google Scholar 

  • Altman J, Bayer SA (1981) The time of origin of neurons of the rat superior colliculus in relation to other components of the visual and visuomotor pathways. Exp Brain Res 42:424–434

    Google Scholar 

  • Altman J, Bayer SA (1982) Development of the cranial nerve ganglion and related nuclei in the rat. Adv Anat Embryol Cell Biol 74:1–90

    Google Scholar 

  • Altman J, Bayer SA (1984) Development of the spinal cord. Adv Anat Embryol Cell Biol 85:1–164

    Google Scholar 

  • Baimbridge KG, Miller JJ (1982) Immunohistochemical localization of calcium binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat. Brain Res 245:223–229

    Google Scholar 

  • Bayer SA (1979) The development of the septal region in the rat. I. neurogenesis examined with Thymidine autoradiography. J Comp Neurol 183:89–106

    Google Scholar 

  • Bayer SA (1980a) Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-Thymidine autoradiography. J Comp Neurol 190:87–114

    Google Scholar 

  • Bayer SA (1980b) Quantitative 3H-thymidine radioautographic analysis of neurogenesis in the rat amygdala. J Comp Neurol 194:845–875

    Google Scholar 

  • Bayer SA (1983) 3H-Thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50:329–340

    Google Scholar 

  • Bishop JE, Norman AW (1975) Metabolism of 25-hydroxy-vitamin D3 in the chick embryo. Arch Biochem Biophys 167:769–773

    Google Scholar 

  • Campbell AK (1983) Intracellular calcium. Wiley and Son, Chichester

    Google Scholar 

  • Celio MR (1984) Calcium binding proteins in the rat brain. Habilitationsschrift Universität Zürich, pp 1–100

  • Celio MR, Norman AW (1985) Nucleus basalis Meynert neurons contain the vitamin D-dependent calcium binding protein (calbindin D-28k). Anat Embryol 173:143–148

    Google Scholar 

  • Cheung EJ (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27

    Google Scholar 

  • Christakos S, Friedlander EJ, Frandsen BR, Norman AW (1979) Studies on the mode of action of calciferol. XII. Development of a radioimmunoassay for calbindin D-28k. Endocrinol 104:1495–1503

    Google Scholar 

  • Garcia-Segura LM, Baetens D, Roth J, Norman AW, Orci L (1984) Immunohistochemical mapping of calcium binding protein in the rat central nervous system. Brain Res 296:75–86

    Google Scholar 

  • Ito M (1984) The cerebellum. Raven press

  • Iurato S (1962) Functional implications of the nature and submicroscopic structure of the tectorial and basilar membrane. J Acoust Soc Am 34:1386–1395

    Google Scholar 

  • Iurato S (1967) Submicroscopic structure of the inner ear. Pergamon press

  • Jande SS, Maler L, Lawson DEM (1981) Immunohistochemical mapping of Vitamin D-dependent calcium binding protein in brain. Nature 294:765–767

    Google Scholar 

  • Kazazoglou T, Schmid A, Renaud JF, Ladzunski M (1983) Ontogenetic appearance of Ca2+ channels characterized as binding sites for nitrendipine during development of nervous, skeletal and cardiac muscle systems in the rat. FEBS Lett 164:75–79

    Google Scholar 

  • König N, Roch G, Marty R (1975) The onset of synaptogenesis in rat temporal cortex. Anat Embryol 148:73–87

    Google Scholar 

  • König N, Mathys R (1981) Early neurogenesis and synaptogenesis in the cerebral cortex. Bibliotheca anatomica 19:152–160

    Google Scholar 

  • Legrand Ch, Thomasset M, Parkes CO, Clavel MC, Rabié A (1983) Calcium binding protein in the developing rat cerebellum. Cell Tissue Res 233:389–402

    Google Scholar 

  • Lidov HGW, Molliver ME (1982) Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res Bull 9:559–604

    Google Scholar 

  • Lim DJ (1977) Fine morphology of the tectorial membrane (fresh and developmental). In: Inner ear Biology. Portman M, Aran JM (eds) INSERM 18, pp 47–60

  • Marchand R, Lajoie L (1986) Histogenesis of the strio-pallidal system in the rat. Neurogenesis of its neurons. Neuroscience 17:573–590

    Google Scholar 

  • Marin-Padilla M (1984) Neurons of layer I. A developmental Analysis. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press New York, 1985

    Google Scholar 

  • Rabié A, Thomasset M, Legrand Ch (1983) Immunocytochemical detection of calcium-binding protein in the cochlear and vestibular hair cells of the rat. Cell Tissue Res 232:691–696

    Google Scholar 

  • Raedler R, Raedler A (1978) Autoradiographic study of early neurogenesis in rat neocortex. Anat Embryol 154:267–284

    Google Scholar 

  • Roth J, Baetens D, Norman AW, Garcia Segura LM (1981) Specific neurons in the chick central nervous system stain with an antibody against chicken intestinal Vitamin D-dependent calcium binding protein. Brain Res 222:452–457

    Google Scholar 

  • Ruben RJ (1967) Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol [Suppl] 220:1–44

    Google Scholar 

  • Schneeberger PR, Norman AW, Heizmann CW (1985) Neurosci Lett 59:97–103

    Google Scholar 

  • Straus W (1976) Use of peroxydase inhibitors for immunoperoxydase methods. In: Immunoenzymatic techniques. INSERM. Elsevier, pp 117–125

  • Wallace JA, Lauder JM (1983) Development of the serotonergic system in the rat embryo: an immunocytochemical study. Brain Res Bull 10:459–479

    Google Scholar 

  • Wassermann RH, Taylor AN (1966) Vitamin D-induced calcium binding protein in chick intestinal mucosa. Science 152:791–793

    Google Scholar 

  • Wassermann RH, Fullmer CS (1982) Vitamin D induced calcium binding protein. In: Cheung ED (ed) Calcium and cell function, vol II. Academic press

  • Wassermann RH (1985) Nomenclature of the Vitamin D-induced calcium binding protein. In: Norman AW, Schaefer K, Grigoilet HG, Herrath D v (eds) Vitamin D. Walter de Gruyter Berlin New York, pp 321–323

    Google Scholar 

  • Weibel ER (1957) Zur Kenntnis der Differenzierungsvorgänge im Epithel des Ductus Cochlearis. Acta Anat 29:53–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Submitted by S.E. as her doctoral thesis at the medical faculty of the University of Zürich

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enderlin, S., Norman, A.W. & Celio, M.R. Ontogeny of the calcium binding protein calbindin D-28k in the rat nervous system. Anat Embryol 177, 15–28 (1987). https://doi.org/10.1007/BF00325286

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325286

Key words

Navigation