Skip to main content
Log in

Diversity, metabolic types and δ13C carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The grass flora of Namibia (374 species in 110 genera) shows surprisingly little variation in δ13C values along a rainfall gradient (50–600 mm) and in different habitat conditions. However, there are significant differences in the δ13C values between the metabolic types of the C4 photosynthetic pathway. NADP-ME-type C4 species exhibit the highest δ13C values (−11.7 ‰) and occur mainly in regions with high rainfall. NAD-ME-type C4 species have significantly lower δ13C values (−13.4 ‰) and dominate in the most arid part of the precipitation regime. PCK-type C4 species play an intermediate role (−12.5 ‰) and reach a maximum abundance in areas of intermediate precipitation. This pattern is also evident in genera containing species of different metabolic types. Within the same genus NAD species reach more negative δ13C values than PCK species and δ13C values decreased with rainfall. Also in Aristida, with NADP-ME-type photosynthesis, δ13C values decreased from −11 ‰ in the inland region (600 mm precipitation) to −15 ‰ near the coast (150 mm precipitation), which is a change in discrimination which is otherwise associated by a change in metabolism. The exceptional C3 species Eragrostis walteri and Panicum heterostachyum are coastal species experiencing 50 mm precipitation only. Many of the rare species and monotypic genera grow in moist habitats rather than in the desert, and they are not different in their carbon isotope ratios from the more common flora. The role of species diversity with respect to habitat occupation and carbon metabolism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Besler H (1972) Klimaverhältnisse und klimamorphologische Zonierung der zentralen Namib (Südwestafrika). Stuttg Geogr Stud 83: 1–209

    Google Scholar 

  • Buchmann N, Brooks JR, Rapp KD, Ehleringer JR (1995) Carbon isotope ratios of C4 grasses is influenced by light and water supply. Plant Cell Environ (in press)

  • Clayton WD (1981) Evolution and distribution of grasses. Ann Miss Bot Gard 68: 5–14

    Google Scholar 

  • Ehleringer JR, Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24: 411–439

    Google Scholar 

  • Ehleringer JR, Pearcy RW (1983) Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol 73: 555–559

    Google Scholar 

  • Ehleringer JR, Hall AE, Farquhar GD (1993) Stable isotopes and plant carbon-water relations. Academic Press, San Diego

    Google Scholar 

  • Ellis RP (1977a) Distribution of the Kranz syndrome in the southern African Eragrostoideae and Panicoideae according to bundle sheath anatomy and cytology. Agroplantae 9: 73–110

    Google Scholar 

  • Ellis RP (1977b) Leaf anatomy of the South African Danthonieae (Poaceae) I. The genus Dregeochloa. Bothalia 12: 209–213

    Google Scholar 

  • Ellis RP (1984a) Eragrostis walteri—a first record of non-Kranz leaf anatomy in the sub-family Chloridoideae (Poaceae). S Afr J Bot 3: 380–386

    Google Scholar 

  • Ellis RP (1984b) Leaf anatomy of the South African Danthonieae (Poaceae). IX. Asthenatherum glaucum. Bothalia 15: 153–159

    Google Scholar 

  • Ellis RP (1986) Leaf anatomy of the South African Danthonieae (Poaceae). XV. The genus Elytrophorus. Bothalia 16: 243–249

    Google Scholar 

  • Ellis RP (1988) Leaf anatomy and systematics of Panicum (Poaceae: Panicoideae) in southern Africa. Monogr Syst Bot Miss Bot Gard 25: 129–156

    Google Scholar 

  • Ellis RP (1990) Tannin-like substances in grass leaves. Mem Bot Surv S Afr 59: 59–77

    Google Scholar 

  • Ellis RP, Vogel JC, Fuls A (1980) Photosynthetic pathways and the geographic distribution of grasses in South West Africa/Namibia. S Afr J Sci 76: 307–314

    Google Scholar 

  • Evans JR, Sharkey TD, Berry JA, Farquhar GD (1986) Carbon isotope discrimination measured oncurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Aust J Plant Physiol 13: 281–292

    Google Scholar 

  • Farquhar GD (1983) On the nature of carbon isotope decrimination in C4 species. Aust J Plant Physiol 10: 205–226

    Google Scholar 

  • Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic Press, San Diego, pp 71–92

    Google Scholar 

  • Gebauer G, Schulze E-D (1991) Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 87: 198–207

    Google Scholar 

  • Gibbs Russell G, Watson GE, Koekemoer M, Smook L, Barker NP, Anderson HM, Dallwitz MJ (1990) Grasses of Southern Africa. Mem Bot Surv S Afr 58: 1–437

    Google Scholar 

  • Giess W (1971) A preliminary vegetation map of South West Africa. Dinteria 4: 5–114

    Google Scholar 

  • Hattersley PW (1982) δ13C values of C4 types in grasses. Aust J Plant Physiol 9: 139–154

    Google Scholar 

  • Hattersley PW (1983) The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57: 113–128

    Google Scholar 

  • Hattersley PW (1992) C4 photosynthetic pathways variation in grasses (Poaceae): its significance for arid and semi-arid lands. In: Chapman G (ed) Desertified grasslands: their biology and management. Academic Press, London, pp 181–212

    Google Scholar 

  • Henderson S, Hattersley P, Caemmerer S von, Osmond CB (1994) Are C4 pathway plants threatened by global climatic change? In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. (Ecological studies, vol 100) Springer, Berlin Heidelberg New York, pp 529–552

    Google Scholar 

  • Merxmüller H (1970) Prodromus einer Flora von Südwestafrika. J. Cramer, Lehre

    Google Scholar 

  • Mooney HA (1995) Global biodiversity assessment (GBA) Section 6: Biodiversity and ecosystem function: basic principles. UNEP, Nairobi

    Google Scholar 

  • Müller MAN (1983) Grasses of South West Africa/Namibia. Department of Agriculture and Nature Conservation, Windhoek, Namibia

    Google Scholar 

  • Müller MAN (1985) Gräser Südwestafrika/Namibias. J. Meinert, Windhoek

    Google Scholar 

  • Osmond CB, Ziegler H, Stichler W, Trimborn P (1975) Carbon isotope discrimination in alpine succulent plants supposed to be capable of Crassulacean acid metabolism (CAM). Oecologia 28: 323–328

    Google Scholar 

  • Pate JS, Hopper SD (1994) Rare and common plants in ecosystems, with special reference to the South-west Australian flora. Ecol Stud 99: 293–326

    Google Scholar 

  • Penning de Vries FWT, Djitéye MA (1982) La productivité des paturages sahèliens. Pudoc, Wageningen

    Google Scholar 

  • Prendergast HDV, Hattersley PW (1987) Australian C4 grasses (Poaceae): leaf blade anatomical features in relation to C4 acid decarboxylation types. Aust J Bot 35 355–382

    Google Scholar 

  • Prendergast HDV, Hattersley PW, (1987) Australian C4 grasses (Poaceae): leaf blade anatomical features in relation to C4 acid decarboxylation types. Aust J Bot 35: 355–382

    Google Scholar 

  • Prendergast HDV, Hattersley PW, Stone NE, Lazarides M (1986) C4 acid decarboxylation type in Eragrostis (Poaceae): patterns of variation in chloroplast position, ultrastructure and geographical distribution. Plant Cell Environ 9: 333–344

    Google Scholar 

  • Prendergast HDV, Hattersley PW, Stone NE (1987) New structural/biochemical associations inleaf blades of C4 grasses (Poaceae). Aust J Plant Physiol 14: 403–420

    Google Scholar 

  • Robicheaux RH, Pearcy RW (1984) Evolution of C3 and C4 plants along an environmental moisture gradient: patterns of photosynthetic differentiation in Hawaiian Scaevola and Euphorbia species. Am J Bot 71: 121–129

    Google Scholar 

  • Schulze E-D, Mooney HA (1994) Biodiversity and ecosystem function (Ecological studies, vol 99) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schulze E-D, Schulze I (1976) Distribution and control of photosynthetic pathways in plants growing in the Namib Desert, with special regard to Welwitschia mirabilis Hook. fil. Madoqua 9: 5–13

    Google Scholar 

  • Schulze E-D, Gebauer G, Ziegler H, Lange OL (1991) Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88: 451–455

    Google Scholar 

  • Teeri JA, Stowe LG (1976) Climatic patterns and the distribution of C4 grasses in North America. Oecologia 223: 1–12

    Google Scholar 

  • Vogel JC, Fuls A, Ellis RP (1978) The geographical distribution of Kranz grasses in South Africa. S Afr J Sci 74: 209–215

    Google Scholar 

  • Volk OH (1974) Gräser des Farmgebietes von Südwestafrika. Windhoek SAW Wiss. Gesellschaft

  • Walter H (1964) Die Vegetation der Erde in öko-physiologischer Betrachtung, vol I. Die tropischen und subtropischen Zonen. Fischer, Stuttgart

    Google Scholar 

  • Walter H, Volk OH (1954) Grundlagen der Weidewirtschaft in Südwestafrika. Ulmer, Stuttgart

    Google Scholar 

  • Watson L, Dallwitz MJ (1989) Grass genera of the world, 3rd edn, microfiche. Research School of Biological Sciences, Australian National University, Canberra

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, E.D., Ellis, R., Schulze, W. et al. Diversity, metabolic types and δ13C carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions. Oecologia 106, 352–369 (1996). https://doi.org/10.1007/BF00334563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334563

Key words

Navigation