Skip to main content
Log in

A Boolean complete neural model of adaptive behavior

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A multi-layered neural assembly is developed which has the capability of learning arbitrary Boolean functions. Though the model neuron is more powerful than those previously considered, assemblies of neurons are needed to detect non-linearly separable patterns. Algorithms for learning at the neuron and assembly level are described. The model permits multiple output systems to share a common memory. Learned evaluation allows sequences of actions to be organized. Computer simulations demonstrate the capabilities of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albus, J.S.: Brains, behavior and robotics. Peterbourough, NH: McGraw-Hill 1981

    Google Scholar 

  • Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–78 (1977)

    Google Scholar 

  • Amari, S.: Topographic organization of nerve fields. Bull. Math. Biol. 42, 339–364 (1980)

    Google Scholar 

  • Amari, S., Takeuchi, A.: Mathematical theory on formation of category detecting nerve cells. Biol. Cybern. 29, 127–136 (1978)

    Google Scholar 

  • Anderson, P., Sunberg, S.H., Sveen, O., Swann, J.W., Wigstrom, H.: Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs. J. Physiol. 302, 463–482 (1980)

    Google Scholar 

  • Barnes, C.A.: Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74–104 (1979)

    Google Scholar 

  • Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuron-like adaptive elements that can solve difficult learning control problems. Comp. and Info. Sci. Dept. U. of Mass. Amberst, Mass. Techn. Report 82-20 (1982)

  • Barto, A.G., Sutton, R.S., Brouwer, P.S.: Associative search network: a reinforcement learning associative memory. Biol. Cybern. 40, 201–211 (1981)

    Google Scholar 

  • Cohen, P.R., Feigenbaum, E.A.: The handbook of artificial intelligence, Vol. 3. Stanford, CA: Heuristech Press 1982

    Google Scholar 

  • Dunwiddie, T., Lynch, G.: Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J. Physiol. 276, 353–367 (1978)

    Google Scholar 

  • Feldman, J.A.: A connectionist model of visual memory. In: Parallel models of associative memory, Hinton, G.E., Anderson, J.A. (eds.) Hillsdale, NJ: Lawrence Erlbaum Associates 1981

    Google Scholar 

  • Fukushima, K.: Cognitron: a self-organizing multilayered neural network. Biol. Cybern. 20, 121–136 (1975)

    Google Scholar 

  • Gallistel, C.R.: Self-stimulation: The neurophysiology of reward and motivation. In: The physiological basis of memory, Deutsch, J.A. (ed.). New York: Academic Press 1973

    Google Scholar 

  • Gallistel, C.R.: The organization of action. Hillsdale, NJ: Lawrence Erlbaum Associates 1980

    Google Scholar 

  • Hampson, S.E.: A neural model of adaptive behavior. Dissertation (in preparation) (1983)

  • Hebb, D.O.: The organization of behavior: a neuropsychological theory. New York: Wiley 1949

    Google Scholar 

  • John, E.R.: A model of consciousness. In: Consciousness and selfregulation, Schwartz, G.E., Shapiro, D. (eds.). New York: Plenum Press 1976

    Google Scholar 

  • John, E.R.: A neurophysiological model of purposive behavior. In: Neural mechanism of goal-directed behavior and learning, Thomspon, R.F., Hicks, L.H., Shvyrkow, V.B. (eds.). New York: Academic Press 1980

    Google Scholar 

  • John, E.R., Schwartz, E.I.: The neurophysiology of information processing and cognition. Ann. Rev. Psychol. 29, 1–29 (1978)

    Google Scholar 

  • Kandel, E.R.: Small systems of neurons. Sci. Am. 241, 66–76 (1979)

    Google Scholar 

  • Kent, E.W.: The brains of men and machines. Peterborough, NH: BYTE/McGraw-Hill 1981

    Google Scholar 

  • Kety, S.S.: The evolution of concepts of memory. In: The neural basis of behavior, Beckman, A.L. (ed.). New York: SP Medical and Scientific Books 1982

    Google Scholar 

  • Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982a)

    Google Scholar 

  • Kohonen, T.: Analysis of a simple self-organizing process. Biol. Cybern. 44, 135–140 (1982b)

    Google Scholar 

  • Krasne, F.B.: Extrinsic control of intrinsic neural plasticity. Brain Res. 140, 197–216 (1978)

    Google Scholar 

  • Lindsay, P.H., Norman, D.A.: Human information processing. New York: Academic Press 1977

    Google Scholar 

  • Mervis, C.B., Rosch, E.: Categorization of natural objects. Ann.Rev. Psychol. 32, 89–115 (1981)

    Google Scholar 

  • Minsky, M., Papert, S.: Perceptrons. Cambridge, MA: MIT Press 1972

    Google Scholar 

  • Minsky, M.: Steps toward artificial intelligence. In: Computers and thought, Feigenbaum, E.A., Feldman, J. (eds.). New York: McGraw-Hill 1963

    Google Scholar 

  • Nilsson, N.J.: Learning machines. New York: McGraw-Hill 1965

    Google Scholar 

  • Overton, K.L., Arbib, M.A.: The extended branch-arrow model of the formation of retino-tectal connections. Biol. Cybern. 45, 157–175 (1982)

    Google Scholar 

  • Pugh, G.E.: The biological origin of human values. New York: Basic Books Inc. 1977

    Google Scholar 

  • Reilly, D.L., Cooper, L.N., Elbaum, C.: A neural model for category learning. Biol. Cybern. 45, 35–41 (1982)

    Google Scholar 

  • Rescorla, R.A.: Informational variables in pavlovian conditioning. In: Psychology of learning and motivation, Vol. 6, Bower, G.H. (ed.). New York: Academic Press 1972

    Google Scholar 

  • Rescorla, R.A., Wagner, A.R.: A theory of pavlovian conditioning. In: Classical conditioning. II, Black, A.H., Prokasy, W.F. (eds.). New York: Appleton-Century-Crofts 1972

    Google Scholar 

  • Robertson, P.: Non-temporal predicion — a distributed system for concept acquisition. CSCSI/SCEIO Conf. Pro. (1982)

  • Rosenblatt, F.: Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Washington, DC: Spartan Books 1962

    Google Scholar 

  • Rumelhart, D.E., Siple, P.: The process of recognizing tachistoscopically presented words. Psychol. Rev. 81, 99–118 (1974)

    Google Scholar 

  • Samuel, A.L.: Some studies in machine learning using the game of checkers. In: Computers and thought, Feigenbaum, E.A., Feldman, J. (eds.). New York: McGraw-Hill 1963

    Google Scholar 

  • Sejnowski, T.J.: Skeleton filters in the brain. In: Parallel models of associative memory, Hinton, G.E., Anderson, J.A. (eds.). Hillsdale, NJ: Lawrence Erlbaum Associates 1981

    Google Scholar 

  • Spinelli, D.N., Hirsch, H.V.B., Phelps, R.W., Metzler, J.: Visual experience as a determinant of the response characteristics of cortical receptive fields in cats. Exp. Brain Res. 15, 289–304 (1972)

    Google Scholar 

  • Spinelli, D.N., Jensen, F.E.: Plasticity: the mirror of experience. Science 203, 75–78 (1979)

    Google Scholar 

  • Squire, L.R.: The neuropsychology of human memory. Ann. Rev. Neurol. 5, 241–273 (1982)

    Google Scholar 

  • Sutton, R.S., Barto, A.G.: Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 88, 135–170 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hampson, S., Kibler, D. A Boolean complete neural model of adaptive behavior. Biol. Cybern. 49, 9–19 (1983). https://doi.org/10.1007/BF00336924

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336924

Keywords

Navigation