Skip to main content
Log in

Chemical composition of halophytes from the Neusiedler Lake region in Austria

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The ionic relations in halophytes from the region east of Neusiedler Lake in Austria have been investigated. The study encompasses the following compounds: Na, K, Mg, Ca; Cl, SO4, phosphate, nitrate, and organic acids.

The ionic composition varies substantially among the species investigated. Frequently a specific pattern of ion content can be found within a specific taxon.

  1. a)

    Dicotyledons: Extraordinary accumulation of sodium, high intake of inorganic ions (mainly Cl, less SO4), and regular occurrence of free oxalate, causing low Ca-concentrations, are typical for Chenopodiaceae and Caryophyllaceae (Spergularia media). Lepidium crassifolium shows similar sodium preponderance accompanied by high levels of SO4, Cl, and organic anions other than oxalate (mainly citrate and malate). The remaining dicotyledons show rather moderate salt content; Asteraceae and Cichoriaceae prefer Cl, and Plantago maritima accumulates high amounts of SO4 as well as Cl. Malate and citrate are, without exception, the main organic anions. The K:Na ratios in dicotyledons (esp. Chenopodiaceae and Lepidium-Brassicaceae) lie far below unity.

  2. b)

    Monocotyledons: In marked contrast, Poaceae, Cyperaceae, and Juncaceae are characterized by a general low salt status. With few exceptions, Cl is stored as the main inorganic anion, phosphate reaches higher levels than in dicotyledons and in many cases lies in nearly the same concentration range as SO4. The pattern of organic anions with malate and citrate as the main acids, does not basically differ from nonhalophilous species. In any case, K:Na ratio exceeds unity. Triglochin maritimum is the only monocotyle species exhibiting as high salt content and low K:Na ratios as dicotyledons.

Nitrate and phosphate are of minor quantitative importance with regard to their osmotic efficiency; their mEq percentage of the total anion concentration range between 0.03 to 2.6 (NO3) and 0.5 to 13.6 (phosphate), respectively.

The results are discussed from different points of view: on the one hand, the general problems of salt tolerance, on the other hand, the taxonomical and ecological aspects. beneficial to plant growth in view of salt sensitivity of enzymatic reactions. However, low osmotic potential of cell sap, and consequently, the acquisition of water is guaranteed by storing high amounts of sugars: according to our data (Albert and Popp, in preparation) total sugar concentration in halophilous Poaceae, Cyperaceae, and Juncaceae amounts to up to 200 mmol·l-1 fresh water, whereas in salt rich dicotyle species the sugar content is comparatively low (up to 50 mmol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd el Rahman, A.A., Ezzat, N.H., Hussein, A.H.: Variations in the mineral composition of plant material in the different ecological groups. Flora 164, 73–84 (1975)

    Google Scholar 

  • Adriani, M.J.: Halophyten. Handbuch der Pflanzenphysiologie (W. Ruhland, Hrsg.), Bd. IV, S. 709–736. Berlin-Göttingen-Heidelberg: Springer 1958

    Google Scholar 

  • Albert, R.: Vergleichende Untersuchungen über den Mineralstoffwechsel der Halophyten des Neusiedlerseegebietes. Phil. Diss., Wien (1971)

  • Albert, R.: Salt regulation in halophytes. Oecologia (Berl.) 21, 57–71 (1975)

    Google Scholar 

  • Albert, R., Kinzel, H.: Unterscheidung von Physiotypen bei Halophyten des Neusiedlerseegebietes (Österreich). Z. Pflanzenphysiol. 70, 138–158 (1973)

    Google Scholar 

  • Arnold, A.: Beiträge zur ökologischen und chemischen Analyse des Halophytenproblems. Jb. wiss. Bot. 83, 103–132 (1936)

    Google Scholar 

  • Ashby, W.C., Beadle, N.C.W.: Studies in halophytes. III. Salinity factors in the growth of Australian saltbushes. Ecology 38, 344–352 (1957)

    Google Scholar 

  • Austenfeld, F.-A.: Untersuchungen zur Physiologie der Nitratspeicherung und Nitratassimilation von Chenopodium album L. Z. Pflanzenphysiol. 67, 271–281 (1972)

    Google Scholar 

  • Austenfeld, F.-A.: Untersuchungen zum Ionenhaushalt von Salicornia europaea L. unter besonderer Berücksichtigung des Oxalats in Abhängigkeit von der Substratsalinität. Biochem. Physiol. Pflanzen 165, 303–316 (1974)

    Google Scholar 

  • Beadle, N.C.W., Whalley, R.D.B., Gibson, J.B.: Studies in halophytes. II. Analytical data on the mineral constituents of three species of Atriplex and their accompanying soils in Australia. Ecology 38, 340–344 (1957)

    Google Scholar 

  • Biebl, R., Kinzel, H.: Blattbau und Salzgehalt von Laguncularia recemosa (L.) Gaertn. f. und anderer Mangrovebäume auf Puerto Rico. Öst. bot. Z. 112, 56–93 (1965)

    Google Scholar 

  • Black, R.F.: Effects of NaCl on the ion uptake and growth of Atriplex vesicaria Heward. Aust. J. biol. Sci. 13, 249–266 (1960)

    Google Scholar 

  • Boucaud, J.: Nutrition azotée sur sols littoraux cas de Suaeda flexilis Focke sur sable littoraux: comparison avec Suaeda macrocarpa Moq. sur vases salées. Oecol. Plant. 7, 315–332 (1972)

    Google Scholar 

  • Breckle, S.-W.: Wasser- und Salzverhältnisse bei Halophyten der Salzsteppe in Utah/USA. Ber. dtsch. bot. Ges. 87, 589–600 (1974)

    Google Scholar 

  • Breckle, S.-W.: Ionengehalte halophiler Pflanzen Spaniens. Decheniana 127, 221–228 (1975)

    Google Scholar 

  • Brownell, P.F., Jackmann, M.E.: Changes during recovery from sodium deficiency in Atriplex. Plant Physiol. 41, 617–622 (1966)

    Google Scholar 

  • Caldwell, M.M.: Physiology of desert halophytes. Ecology of halophytes, pp. 355–378. New York-London: Academic Press 1974

    Google Scholar 

  • Chatterton, N.J., Goodin, J.R., Duncan, C.: Nitrogen metabolism in Atriplex polycarpa as affected by substrate nitrogen and NaCl Salinity. Agron. J. 63, 271–274 (1971)

    Google Scholar 

  • Chatterton, N.J., McKell, C.M.: Atriplex polycarpa. I. Germination and growth as affected by sodium chloride in water cultures. Agron. J. 61, 448–450 (1969)

    Google Scholar 

  • Chatterton, N.J., McKell, C.M., Bingham, F.T., Clawson, W.J.: Absorption of Na, Cl, and B by desert saltbush in relation to composition of nutrient solution culture. Agron. J. 62, 351–352 (1970)

    Google Scholar 

  • Collander, R.: Selective absorption of cations by higher plants. Plant Physiol. 16, 691–720 (1941)

    Google Scholar 

  • Ehrendorfer, F.: Liste der Gefäßpflanzen Mitteleuropas, 2. Aufl. Stuttgart: Fischer 1973

    Google Scholar 

  • Epstein, E.: Mineral metabolism of halophytes. Ecological aspects of the mineral nutrition of plants (I.H. Rorison, ed.), pp. 345–355. Oxford-Edinburgh: Blackwell 1969

    Google Scholar 

  • Flowers, T.J., Hall, J.L.: Biochemical and cytochemical studies of Suaeda maritima. Ion transport by plants (W.P. Anderson, ed.), pp. 357–368. London-New York: Academic Press 1972

    Google Scholar 

  • Ghobadian, A.: Salz und Steppenböden des Seewinkels. Mitt. Oesterr. bodenkdl. Ges. 10, (1966)

  • Greenway, H.: Growth stimulation by high chloride concentrations in halophytes. Israel J. Bot. 17, 169–177 (1968)

    Google Scholar 

  • Greenway, H., Osmond, C.B.: Ion relations, growth and metabolism of Atriplex at high, external, electrolyte concentrations. The biology of Atriplex (R. Jones, ed.), pp. 49–56. Canberra: CSIRO 1970

    Google Scholar 

  • Greenway, H., Rogers, A.: Growth and ion uptake of Agropyron elongatum on saline substrates, as compared with a salt tolerant variety of Hordeum vulgare. Plant Soil 18, 21–30 (1963)

    Google Scholar 

  • Hannon, N.J., Barber, H.N.: The mechanism of salt tolerance in naturally selected populations of grasses. Search 3, 259–260 (1972)

    Google Scholar 

  • Hart, F.L., Fischer, H.J.: Modern food analysis. Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  • Harward, M.R., McNulty, I.: Seasonal changes in ionic balance in Salicornia rubra. Proc. Utah Acad. Sci. Arts Lett. 42, 65–69 (1965)

    Google Scholar 

  • Horak, O., Kinzel, H.: Typen des Mineralstoffwechsels bei den höheren Pflanzen. Öst. bot. Z. 119, 475–495 (1971)

    Google Scholar 

  • Iljin, W.S.: Anpassung der Halophyten an konzentrierte Salzlösungen. Planta (Berl.) 16, 352–366 (1932)

    Google Scholar 

  • Jefferies, R.L.: The ionic relations of seedlings of the halophyte Triglochin maritimum L. Ion transport by plants (W.P. Anderson, ed.), pp. 297–321. London-New York: Academic Press 1972

    Google Scholar 

  • Jeschke, W.D.: Evidence for a K+-stimulated Na+ efflux at the plasmalemma of barley root cells. Planta (Berl.) 94, 240–245 (1970)

    Google Scholar 

  • Kappen, L., Maier, M.: Bedeutung einiger nichtflüchtiger Carbonsäuren für die Frostresistenz des Halophyten Halimione portulacoides unter dem Einfluß verschieden hoher Kochsalzbelastung. Oecologia (Berl.) 12, 241–250 (1973)

    Google Scholar 

  • Kinzel, H.: Ansätze zu einer vergleichenden Physiologie des Mineralstoffwechsels und ihre ökologischen Konsequenzen. Ber. dtsch. bot. Ges. 82, 143–158 (1969)

    Google Scholar 

  • Kinzel, H.: Biochemische Ökologie—Ergebnisse und Aufgaben. Ber. dtsch. bot. Ges. 84, 381–403 (1971)

    Google Scholar 

  • Kinzel, H.: Biochemische Pflanzenökologie. Schriften d. Vereins z. Verbreitung naturw. Kenntnisse in Wien 112, 77–98 (1972)

    Google Scholar 

  • Kylin, A.: Adenosine triphosphatases stimulated by (sodium+potassium): Biochemistry and possible significance for salt resistance. Ion transport by plants (W.P. Anderson, ed.), pp. 369–377. London-New York: Academic Press 1972

    Google Scholar 

  • Kylin, A., Quatrano, R.S.: Metabolic and biochemical aspects of salt tolerance. Plants in saline environments (Ecological Studies 15), pp. 147–167. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • LaHaye, P.A., Epstein, E.: Calcium and salt toleration by bean plants. Physiol. Plantarum 25, 213–218 (1971)

    Google Scholar 

  • Lew, H.: Vergleichende physiologische Untersuchungen an oxalathaltigen Pflanzen. Dissertation der Universität Wien, Bd. 109. Wien: Verband der wissenschaftlichen Gesellschaften Österreichs 1974

  • Lindner, E.: Zellphysiologische Resistenzuntersuchungen an Ruderal-, Wiesen- und Kulturpflanzen. Protoplasma 39, 507–534 (1950)

    Google Scholar 

  • Loneragan, J.F., Snowball, K.: Calcium requirement of plants. Aust. J. Agri. Res. 20, 465–478 (1969)

    Google Scholar 

  • Nierhaus, D., Kinzel, H.: Vergleichende Untersuchungen über die organischen Säuren in Blättern höherer Pflanzen. Z. Pflanzenphysiol. 64, 107–123 (1971)

    Google Scholar 

  • Önal, M.: Beiträge zum Halophytenproblem. Ber. dtsch. bot. Ges. 78, 68–72 (1965)

    Google Scholar 

  • Önal, M.: Der Einfluß des Natriumchlorids auf das Wachstum einiger Halophyten. Rev. Fac. Sci. Univ. Istanbul, Sér. B 34, 313–326 (1969)

    Google Scholar 

  • Osmond, C.B.: Oxalates and ionic equilibria in Australian saltbushes (Atriplex). Nature (Lond.) 198, 503–504 (1963)

    Google Scholar 

  • Osmond, C.B.: Acid metabolism in Atriplex. I. Regulation of oxalate synthesis by the apparent excess cation absorption in leaf tissue. Aust. J. biol. Sci. 20, 575–587 (1967)

    Google Scholar 

  • Osmond, C.B.: Ion absorption in Atriplex leaf tissue. I. Absorption by mesophyll cells. Aust. J. biol. Sci. 21, 1119–1130 (1968)

    Google Scholar 

  • Pitman, M.G., Courtice, A.C., Lee, B.: Comparison of potassium and sodium uptake by barley roots at high and low salt status. Aust. J. biol. Sci. 21, 871–881 (1968)

    Google Scholar 

  • Popp, M.: Mineral- und Säurestoffwechsel einiger Kulturpflanzen bei unterschiedlicher mineralischer Ernährung. Phil. Diss., Wien (1975)

  • Repp, G.: Ökologische Untersuchungen im Halophytengebiet am Neusiedlersee. Jb. wiss. Bot. 88, 554–632 (1939)

    Google Scholar 

  • Rickard, W.H.: Sodium and potassium accumulation by Greasewood and Hopsage leaves. Bot. Gaz. 126, 116–119 (1965)

    Google Scholar 

  • Schimper, A.F.W.: Pflanzengeographie auf physiologischer Grundlage. Jena: Fischer 1898

    Google Scholar 

  • Schnurbein, C.v.: Üben den Anteil von Nitrat und Chlorid an der Zusammensetzung des Zellsaftes von Blütenpflanzen. Flora 158, Abt. A, 577–593 (1967)

    Google Scholar 

  • Schratz, E.: Belträge zur Biologie der Halophyten. III. Über Verteilung, Ausbildung und NaCl-Gehalt der Strandpflanzen und ihre Abhängigkeit vom Salzgehalt des Standortes. Jb. wiss. Bot. 83, 133–189 (1936)

    Google Scholar 

  • Steiner, M.: Zur Ökologie der Salzmarschen der nordöstlichen Vereinigten Staaten von Nordamerika. Jb. wiss. Bot. 81, 94–202 (1934)

    Google Scholar 

  • Stelzer, R., Läuchli, A.: Strukturelle Kompartimentierung der Wurzel von Puccinellia in Beziehung zum Ionentransport in den Sproß. Dtsch. Bot. Ges., Tagung in Zürich, Abstracts (1976)

  • Stewart, G.R., Lee, J.A.: The role of proline accumulation in halophytes. Planta (Berl.) 120, 279–289 (1974)

    Google Scholar 

  • Stewart, G.R., Lee, J.A., Orebamjo, T.O.: Nitrogen metabolism of halophytes. II. Nitrate availability and utilization. New Phytologist 72, 539–546 (1973)

    Google Scholar 

  • Stocker, O.: Der Wasser- und Photosynthesehaushalt mitteleuropäischer Gräser, ein Beitrag zum allgemeinen Konstitutionsproblem des Grastypus. Flora 157, Abt. B, 56–96 (1967)

    Google Scholar 

  • Treichel, S.: Der Einfluß von NaCl auf die Prolinkonzentration verschiedener Halophyten. Z. Pflanzenphysiol. 76, 56–68 (1975)

    Google Scholar 

  • Ullrich-Eberius, C.I.: Die pH-Abhängigkeit der Aufnahme von H2PO4 -, SO4 =, Na+ und K+ und ihre gegenseitige Beeinflussung bei Ankistrodesmus braunii. Planta (Berl.) 109, 161–176 (1973)

    Google Scholar 

  • Waisel, Y.: Biology of halophytes. New York-London: Academic Press 1972

    Google Scholar 

  • Walter, H.: Die ökologischen Verhältnisse in der Namib-Nebelwüste (Südwest-Afrika). Jb. wiss. Bot. 84, 58–222 (1936)

    Google Scholar 

  • Walter, H.: Die Vegetation der Erde in öko-physiologischer Betrachtung, Bd. II. Die gemäßigten und arktischen Zonen. Stuttgart: Fischer 1968

    Google Scholar 

  • Wiessenböck, G.: Einfluß des Bodensalzgehaltes auf Morphologie und Ionenspeicherung von Halophyten. Flora, Abt. B 158, 369–389 (1969)

    Google Scholar 

  • Wiebe, H., Walter, H.: Mineral ion composition of halophytic species from northern Utah. Amer. Midl. Natur. 87, 241–245 (1972)

    Google Scholar 

  • Willert, D.J.v.: Die Bedeutung des anorganischen Phosphates für die Regulation der Phosphoenolpyruvat Carboxylase von Mesembryanthemum crystallinum L. Planta (Berl.) 122, 273–280 (1975)

    Google Scholar 

  • Williams, C.M.: Effects of sodium and potassium salts on growth and oxalate content of Halogeton. Plant Physiol. 35, 500–505 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, R., Popp, M. Chemical composition of halophytes from the Neusiedler Lake region in Austria. Oecologia 27, 157–170 (1977). https://doi.org/10.1007/BF00345820

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00345820

Keywords

Navigation