Skip to main content
Log in

LIDAR monitoring of the temperature in the middle and lower atmosphere

  • LIDAR Monitoring Of The Atmosphere — Recent Developments
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Two methods are described to monitor the temperature of the atmosphere from the ground to 100 km altitude. The Rayleigh LIDAR is now widely used (the French network includes four of those characteristics of which are given), and here, the major results obtained from this technique are presented. The second method, which completes the Rayleigh LIDAR downwards, uses the rotational Raman lines of O2 and N2. The method is briefly described and first results are presented. Including both the Rayleigh and Raman modes leads to a continuous temperature measuring method to survey changes in the lower and middle atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hauchecorne, M.L. Chanin, P. Keckhut: Climatology of the middle atmospheric temperature (30–90 km) and trends as seen by Rayleigh lidar above South of France. J. Geophys. Res. 96, D8, 15.297–15.309 (1991)

    Google Scholar 

  2. P. Keckhut, M.L. Chanin, A. Hauchecorne: Stratospheric Temperature measurements using Raman lidar. Appl. Opt. 29, 5182–5186 (1990)

    Google Scholar 

  3. D. Nedeljkovic, A. Hauchecorne, M.L. Chanin: Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km. To be published in IEEE transactions on geoscience and remote sensing. Special Issue (1992)

  4. G.S. Kent, R.W. Wright: A review of laser radar measurements of atmospheric properties. J. Atmos. Terr. Phys. 32, 917–943 (1970)

    Google Scholar 

  5. A. Hauchecorne, M.L. Chanin: Density and temperature profiles obtained by lidar between 35 and 70km. Geophys. Res. Lett. 7, 565–568 (1980)

    Google Scholar 

  6. M.L. Chanin, A. Hauchecorne: Lidar studies of temperature and density using Rayleigh scattering, MAP Handbook, Vol. 13, 87–99 (1984)

    Google Scholar 

  7. F.J. Schmidlin, H.S. Lee, W. Michel: The inflatable sphere: a technique of the accurate measurement of middle atmosphere temperatures. J. Geophys. Res. 96, D12, 22,673–22,682 (1991)

    Google Scholar 

  8. F.F. Lübken, W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F.J. Schmidlin, A. Hauchecome, M. Mourier, P. Czechowsky: Itercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres and datasondes during the DYANA campaign. Submitted to J. Atmos. Terr. Phys. (1992)

  9. P. Keckhut, A. Hauchecorne, M.L. Chanin: A critical review of the data base acquired for the long term surveillance of the middle atmosphere by the french Rayleigh lidars. Submitted to J. Geophys. Res. (1992)

  10. R. Wilson, A. Hauchecorne, M.L. Chanin: Gravity wave spectra in the middle atmosphere as observed by Rayleigh lidar. Geophys. Res. Lett. 7, 1585–1588 (1990)

    Google Scholar 

  11. R. Wilson, M.L. Chanin, A. Hauchecorne: Gravity waves in the middle atmosphere by Rayleigh Lidar, Part. 1: Case studies. J. Geophys. Res. 96, D3, 5153–5167 (1991a)

    Google Scholar 

  12. R. Wilson, M.L. Chanin, A. Hauchecorne: Gravity waves in the middle atmosphere by Rayleigh Lidar, Part. 2: Climatology. J. Geophys. Res. 96, D3, 5169–5183 (1991b)

    Google Scholar 

  13. S.T. Gille, A. Hauchecorne, M.L. Chanin: Semidiurnal and Diurnal Tidal Effects in the Middle Atmosphere as seen by Rayleigh Lidar. J. Geophys. Res. 96, D4, 7579–7587 (1991)

    Google Scholar 

  14. A. Hauchecorne, T. Blix, R. Gerndt, G.A. Kokin, W. Meyer, N.N. Shefov: Large-scale coherence of the mesospheric and upper stratospheric temperature fluctuations. J. Atmos. Terr. Phys. 49, 649–654 (1987)

    Google Scholar 

  15. A. Hauchecorne, A. Maillard: A 2-D dynamical model of mesospheric temperature inversions in winter. Geophys. Res. Lett. 17, 2197–2200 (1990)

    Google Scholar 

  16. A. Hauchecorne, M.L. Chanin: Mid-latitude Lidar observations of planetary waves in the middle atmosphere during the winter of 1981–1982. J. Geophys. Res. 88, 3843–3849 (1983)

    Google Scholar 

  17. A. Hauchecorne, M.L. Chanin, R. Wilson: Mesospheric temperature inversion and gravity wave breaking. Geophys. Res. Lett. 14, 933–936 (1987)

    Google Scholar 

  18. M.L. Chanin, A. Hauchecorne, N. Smires: Contribution to the new reference atmosphere form ground based lidar. CIRA, 1986, Part. II Advance in Space Res., 10, Vol. 12, 211–216 (1990)

    Google Scholar 

  19. M.L. Chanin, P. Keckhut, A. Hauchecorne, K. Labitzke: The solar activity — QBO effect — in the lower thermosphere. Ann. Geophys. 7, 463–470 (1989)

    Google Scholar 

  20. P. Keckhut, M.L. Chanin: Middle atmosphere response to the 27-day solar rotation as observed by lidar. To be published in Geophys. Res. Lett. (1992)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauchecorne, A., Chanin, M.L., Keckhut, P. et al. LIDAR monitoring of the temperature in the middle and lower atmosphere. Appl. Phys. B 55, 29–34 (1992). https://doi.org/10.1007/BF00348609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00348609

PACS

Navigation