Skip to main content
Log in

A boundary element method for calculating the K field for cracks along a bimaterial interface

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A multi-region boundary element method (BEM) based on the modified crack closure method (CCM) is developed to obtain the energy release rate G for cracks in homogeneous materials and along a bimaterial interface. The energy release rate obtained using the CCM are compared with that obtained using the crack opening displacement (COD) method. A combination of these methods allows us to determine the phase angle ψ and therefore the complex stress intensity factor K for crack problems. We access the accuracy of our BEM by comparing its results with known analytic solutions and previous FEM results in the literature. Computations are also carried out for the asymmetric double cantilever beam (ADCB) specimen, which has been used to determine fracture toughness of polymer/polymer and polymer/nonpolymer interfaces. An auxiliary K A field method to evaluate K is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blandford, G. E.; Ingraffea, A. R.; Liggett, J. A. 1981: Two dimensional stress intensity factor computations using boundary element method. Int. J. Num. Meth. Engng. 17: 387–404

    Google Scholar 

  • Brebbia, C. A.; Dominguez, J. 1989: Boundary elements an introductory course, Southampton, Computational Mechanics Publications.

  • Buchholz, F.-G.; Senger, K.-H. 1986: Debonding analysis of thermally stressed fibre-reinforced composite materials. Spacecraft structures, ESA-SP-238, Noordwijk, 341–346

  • Cao, H. C.; Dagleish, B. J.; Evans, A. G. 1989: Test methods for studying crack behavior at bimaterial interfaces. Closed Loop 17:19–27

    Google Scholar 

  • Charalambides, P. G.; Lund, J.; Evans, A. G.; McMeeking, R. M. 1989: A test specimen for determining the fracture resistance of bimaterial interfaces. J. Appl. Mech. 56: 77–82

    Google Scholar 

  • Cho, S.-B.; Lee, K. R.; Choy, Y. S.; Yuuki, R. 1992: Determination of stress intensity factor and boundary element analysis for interface cracks in dissimilar ansiotropic materials. Eng. Frac. Mech. 34: 603–614

    Google Scholar 

  • Creton, C.; Kramer, E. J.; Hui, C. Y.; Brown, H. R. 1992. Failure mechanisms of polymer interfaces reinforced with block copolymers. Macromolecules 25: 3075–3088

    Google Scholar 

  • Cruse, T. A. 1982: Boundary element analysis in computational fracture mechanics, Dordrecht, The Netherland, Kluwer Academic

    Google Scholar 

  • Evans, A. G.; Dagleish, B. J.; He, M.; Hutchinson, J. W. 1989: On crack path selection and the interface fracture energy in bimaterial systems. Acta Met. 37: 3249–3254

    Google Scholar 

  • Erdogan, F.; Sih, G. C. 1963: On the crack extension in plates under plane loading and transverse shear. J. Basic Engng. Trans. ASME 85: 519–525

    Google Scholar 

  • Gallagher, R. H. 1978: Numerical methods in fracture mechanics, proceedings of the frist international conference, Swansea 1–25

  • Hellen, K. 1984: Introduction to fracture mechanics. New York, Mcgraw-Hill

    Google Scholar 

  • Kanninen, M. F. 1973: An augmented double cantilever beam model for studying crack propagation and arrest. Int. J. of Fracture 9: 83–92

    Google Scholar 

  • Lee, K. Y.; Choi, H. J. 1988: Boundary element analysis of stress intensity factors for bimaterial interface cracks. Eng. Frac. Mech. 29: 461–472

    Google Scholar 

  • Liechti, K. M.; Chai, Y. S. 1992: Asymmetric shielding in interface fracture uinder in-plane shear. J. Appl. Mech. 59: 295–304

    Google Scholar 

  • Martinez, J.; Dominguez, J. 1984: Short communication on the use of quarter-point boundary elements for stress intensity factor computations. Int. J. Num. Meth. Engng. 20: 1941–1950

    Google Scholar 

  • Matos, P. P. L.; McMeeking, R. M.; Charalambides, P. G.; Drory, M. D. 1989: A method for calculating stress intensities in bimaterial fracture. Int. J. Fracture 40: 235–254

    Google Scholar 

  • Mukherjee, S. 1982: Boundary element methods in creep and fracture, London, Applied Science

    Google Scholar 

  • Murakami, Y. (ed.) 1987: Stress Intensity Factors Handbook — Vol. 1, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Parks, D. M. 1974: A stiffness derivative finite element technique for determination of crack tip stress intensity factors. Int. J. Fac. 10: 487–502

    Google Scholar 

  • Raju, I. S. 1987: Calculation of strain energy release rates with higher order and singular finite elements. Eng. Frac. Mech. 28: 251–274

    Google Scholar 

  • Raju, I. S.; Shivakumar, K. N. 1999: An equivalent domain integral method in the two dimensional analysis of mixed mode crack problems. Eng. Frac. Mech. 37: 707–725

    Google Scholar 

  • Rice, J. R. 1968: Mathematical analysis in the mechanics of fracture. In: Liebowitz, H. (ed.): Fracture: An Advanced Treatise. 2, New York, Academic Press.

    Google Scholar 

  • Rice, J. R. 1988: Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 55: 98–103

    Google Scholar 

  • Ruhle, M.; Evans, A. G.; Ashby, M. F.; Hirth, J. P. (eds.) 1990: Metal-Ceramic Interfaces, Acta-Scripta Metallurgica Proceedings, Series 4, New York, Pergamon Press

    Google Scholar 

  • Rybicki, E. F.; Kanninen, M. F. (1977): A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Frac. Mech. 9: 931–938

    Google Scholar 

  • Shih, C. F. 1991: Cracks on bimaterial interfaces: elasticity and plasticity aspects. J. Mater. Sci. Engng. A143: 77–90

    Google Scholar 

  • Smith, J. W.; Kramer, E. J.; Xiao, F.; Hui, C. Y.; Reichert, W.; Brown, H. R. 1993: The Measurement of the Fracture Toughness of Polymer-Nonpolymer Interfaces. J. Mat. Sci. 28: 4234

    Google Scholar 

  • Suo, Z.; Hutchinson, J. W. 1990: Sandwich specimens for measuring interface crack toughness. J. Mater. Sci. Engng. A107: 135–143

    Google Scholar 

  • Suo, Z.; Hutchinson, J. W. 1990: Interface crack between two elastic layers. Int. J. of Fracture 43: 1–18

    Google Scholar 

  • Tan, C. L.; Gao, Y. L. 1991: Axisymmetric boundary equation analysis of interface cracks between dissimilar materials. Computational Mechanics 7: 381–396

    Google Scholar 

  • Washiyama, J.; Creton, C.; Kramer, E. J. 1993: Fracture mechanicsms of polymer interfaces reinforced with block copolymers: transition from chain pullout to crazing. Macromolecules 26: 2928–2934

    Google Scholar 

  • Wang, S. S.; Yau, J. F. 1981: Interfacial cracks in adhesively bounded scarf joints. AIAA Journal 19: 1359–1356

    Google Scholar 

  • Wu, C. H. 1978: Maximum-energy-release rate criterion applied to a tension-compression specimen with cracks. J. of Elasticity 8: 235–257

    Google Scholar 

  • Xiao, F.; Hui, C. Y.; Kramer, E. J. 1993: Analysis of a Mixed Mode Fracture Specimen: The Asymmetric Double Cantilever Beam. J. Mat. Sci. 28: 5620

    Google Scholar 

  • Xiao, F.; Hui, C. Y.; Washiyama, J.; Kramer, E. J. 1994: Phase angle effects on Fracture toughness of polymer interfaces reinforced with block copolymers, in press Macromolecules.

  • Yau, J. F.; Wang, S. S.; Corten, H. T. 1980: A mixed-mode crack analysis of isotropic solid using conservation law of elasticity. J. Appl. Mech. 47: 335–341

    Google Scholar 

  • Yuuki, R.; Cho, S.-B. 1989: Efficient boundary element analysis of stress intensity factors for interface cracks in dissimilar materials. Eng. Frac. Mech. 34: 179–188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atlrui, 25 April 1994

This work is supported by the Cornell Materials Science Center (MSC) which is funded by the National Science Foundation (DMR-MRL program).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, F., Hui, C.Y. A boundary element method for calculating the K field for cracks along a bimaterial interface. Computational Mechanics 15, 58–78 (1994). https://doi.org/10.1007/BF00350289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350289

Keywords

Navigation