Skip to main content
Log in

Analysis of partly wrinkled membranes by the method of dynamic relaxation

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A version of the method of dynamic relaxation is developed to analyze equilibrium configurations of partly wrinkled membranes. In this method equilibria are regarded as long time limits of a damped dynamical problem. The membrane theory considered is based on the concept of a relaxed strain energy function that automatically incorporates the effects of wrinkling. For neo-Hookean materials, existence theorems of nonlinear elasticity are used to show that the relaxed potential energy possesses minimizers in a certain function space. Moreover, solutions of the equilibrium equations furnish global minima of the energy, for certain classes of boundary data. Such deformations are automatically stable according to the minimum-energy criterion. This result motivates the search for solutions of the equilibrium equations, although the existence theory does not guarantee that energy minimizers possess the degree of regularity required by these equations. Several examples of two-and three-dimensional deformations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AcerbiE.; FuscoN. 1984: Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal. 86: 125–145

    Google Scholar 

  • BallJ. M. 1977: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63: 337–403

    Google Scholar 

  • BallJ. M. 1984: Material instabilities and the calculus of variations. In: GurtinM. E. (ed.) Phase transformations and material instabilities in solids, pp. 1–19, MRC No. 52. Academic Press, Orlando, FL

    Google Scholar 

  • BallJ. M.; CurrieJ. C.; OlverP. J. 1981: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41: 135–174

    Google Scholar 

  • CiarletP. G. 1988: Mathematical Elasticity, Vol. 1: Three Dimensional Elasticity. Elsevier, Amsterdam

    Google Scholar 

  • CohenH.; WangC.-C. 1984: On the response and symmetry of elastic and hyperelastic membrane points. Arch. Rat. Mech. Anal. 85: 343–379

    Google Scholar 

  • ColemanB. D.; NollW. 1959: On the thermostatics of continuous media. Arch. Rat. Mech. Anal. 4: 97–128

    Google Scholar 

  • CollinsC.; LuskinM. 1989. The computation of the austenitic-martensitic phase transition. In: RascleM.; SerreD.; SlemrodM. (eds.) PDEs and Continnum Models of Phase Transitions, pp. 34–50, Springer Lecture Notes in Physics. Springer-Verlag, Berlin

    Google Scholar 

  • ContriP.; SchreflerB. A. 1988: A geometrically nonlinear finite element analysis of wrinkled membrane surfaces by a nocompression material model. Comm. Appl. Num. Methods 4: 5–15

    Google Scholar 

  • DacorognaB. 1989: Direct methods in the calculus of variations. Springer-Verlag, Berlin

    Google Scholar 

  • GravesL. E. 1939: The Weierstrass condition for multiple integral variation problems. Duke Math. Journal 5: 656–660

    Google Scholar 

  • GreenA. E.; AdkinsJ. E. 1970: Large elastic deformations. Clarendon Press, Oxford

    Google Scholar 

  • HaseganuE.; SteigmannD. J. 1994: Theoretical flexural response of a pressurized cylindrical membrane. Int. J. Solids. Struct. 31: 27–50

    Google Scholar 

  • HerrmannW.; BertholfL. D. 1983: Explicit Lagrangian finite-difference methods. In: BelytschkoT.; HughesT. J. R. (eds.) Computational methods for transient analysis, pp. 361–416. Elsevier, Amsterdam

    Google Scholar 

  • HilgersM. G.; PipkinA. C. 1992: Elastic sheets with bending stiffness. Q. J. Mech. Appl. Math. 45: 57–75

    Google Scholar 

  • HillR. 1957: On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 26: 93–110

    Google Scholar 

  • KondoK.; IaiT.; MorigutiS.; MurasakiT. 1955: Tension field theory. In: Memoirs of the unifying study of the basic problems in engineering science by means of geometry, Vol. 1, C.-V. pp. 61–85, Gakujutsu, Bunken Fukyu-Kai, Tokyo

    Google Scholar 

  • Kreyszig, E. 1968: Introduction to differential geometry and Riemannian geometry. University of Toronto Press

  • LiX.; SteigmannD. J. 1993a: Finite plane twist of an annular membrane. Q. J. Mech. Appl. Math. 46: 601–625

    Google Scholar 

  • Li, X.; Steigmann, D. J. 1993b: Point loads on a hemispherical elastic membrane. Int. J. Nonlinear Mech. (to appear)

  • Mansfield, E. H. 1970: Load transfer via a wrinkled membrane. Proc. R. Soc. Lond. A 316, 269

  • Mikulas, M. M. 1964: Behaviour of a flat membrane wrinkled by the rotation of an attached hub. NASA TN D-2456

  • MillerR. K.; HedgepethJ. M. 1982: An algorithm for finite element analysis of partly wrinkled membranes. AIAA Journal 20: 1761–1763

    Google Scholar 

  • MillerR. K.; HedgepethJ. M.; WeingartenV. I.; DasP.; KahyaiS. 1985: Finite element analysis of partly wrinkled membranes. Computers and Structures 20: 631–639

    Google Scholar 

  • MorreyC. B. 1952: Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2: 25–53

    Google Scholar 

  • MorreyC. B. 1966: Multiple integrals in the calculus of variations. Springer-Verlag, Berlin

    Google Scholar 

  • NaghdiP. M. 1972: Theory of shells and plates. In: FlüggeS. (ed.) Handbuch der Physik, Vol VIa/2, pp. 425–640. Springer-Verlag, Berlin

    Google Scholar 

  • Nishimura, T.; tasaka, N.; Honma, T. 1986: Membrane structure analysis using the finite element technique. In: Heki, K. (ed.) Proc. IASS Symposium on shells, membranes and space frames, Vol. 2, pp. 9–16

  • OgdenR. W. 1984: Nonlinear elastic deformations. Ellis-Horwood, Chichester (U.K.)

    Google Scholar 

  • PapadrakakisM. 1981: A method for the automatic evaluation of dynamic relaxation parameters. Comput. Meth. Appl. Mech. Engng. 25: 35–48

    Google Scholar 

  • PipkinA. C. 1986: The relaxed energy density for isotropic elastic membranes. I.M.A. J. Appl. Math. 36: 85–99

    Google Scholar 

  • Pipkin, A. C. 1993: Relaxed energy densities for large deformations of membranes (preprint)

  • Reissner, E. 1939: Tension-field theory. In: Proc. 5th International Congress on Applied Mechanics pp. 88–92

  • RoddemanD. G.; DrukkerJ.; OomensW. J.; JanssenJ. D. 1987: The wrinkling of thin membranes part 1—theory and part 2—numerical analysis. ASME J. Appl. Mech. 54: 884–892

    Google Scholar 

  • RoddemanD.G. 1991: Finite element analysis of wrinkling membranes. Comm. Appl. Num. Meth. 7: 299–307

    Google Scholar 

  • Roxburgh, D. G.; Steigmann, D. J.; Tait, R. J. 1993: Azimuthal shearing and transverse defletion of a prestretched annular elastic membrane. Int. J. Engng. Sci. (to appear)

  • SillingS. A. 1988a: Numerical studies of loss of ellipticity near singularities in an elastic material. J. Elasticity 19: 213–239

    Google Scholar 

  • SillingS. A. 1988b: Consequences of the Maxwell relation for anti-plane shear deformations of an elastic solid. J. Elasticity 19: 241–284

    Google Scholar 

  • SillingS. A. 1988c: Finite difference modelling of phase changes and localization in elasticity. Comp. Meth. Appl. Mech. Engng. 70: 251–273

    Google Scholar 

  • SillingS. A. 1989: Phase changes induced by deformation in isothermal elastic crystals. J. Mech. Phys. Solids 37: 293–316

    Google Scholar 

  • SteigmannD. J. 1986: Proof of a conjecture in elastic membrane theory. ASME J. Appl. Mech. 36: 955–956

    Google Scholar 

  • SteigmannD. J. 1990: Tension-field theory. Proc. Roy. Soc. Lond. A. 129: 141–173

    Google Scholar 

  • SteigmannD. J. 1991: A note on pressure potentials. J. Elasticity 26: 87–93

    Google Scholar 

  • SteigmannD. J.; PipkinA. C. 1991: Equilibrium of elastic nets. Phil. Trans. Roy. Soc. Lond. A 335 419–454

    Google Scholar 

  • Stein, M.; Hedgepeth, J. M. 1961: Analysis of partly wrinkled membranes. NASA TN D-813

  • Stoker, J. J. 1964: Topics in nonlinear elasticity (notes by R. W. Dickey). Courant Inst. Math. Sci.

  • SwartP. J.; HolmesP. J. 1992: Energy minimization and the formation of microstructure in dynamic anti-plane shear. Arch. Rat. Mech. Anal. 121: 37–85

    Google Scholar 

  • UnderwoodP. 1983: Dynamic relaxation. In: BelytschkoT.; HughesT. J. R. (eds.) Computational Methods for Transient Analysis, pp. 245–265, Elsevier, Amsterdam

    Google Scholar 

  • WagnerH. 1929: Ebene blechwandträger mit sehr dunnem stegblech. Z. Flugtechnik u. Motorluftschiffahrt. 20: 200–207, 227–233, 256–262, 279–284, 306–314

    Google Scholar 

  • WuC.-H. 1978: Nonlinear wrinkling of nonlinear membranes of revolution. ASME J. Appl. Mech. 45: 533–538

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 20 March 1994

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haseganu, E.M., Steigmann, D.J. Analysis of partly wrinkled membranes by the method of dynamic relaxation. Computational Mechanics 14, 596–614 (1994). https://doi.org/10.1007/BF00350839

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350839

Keywords

Navigation