Skip to main content
Log in

Stress analysis of elastomeric materials at large extensions using the finite element method

Part I Stress and strain distribution around spherical holes

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The finite element analysis newly developed is applied to stress and strain analyses around spherical holes in elastomers from small to very large deformations. The stress and strain distributions computed based on the strain-energy function of real elastomers measured through strip-biaxial testing agree well with the classical theoretical ones at small strain. At large extension, however, the maximum stress concentration factor increases and the maximum strain concentration factor decreases as strain increases. These tendencies will be increased more in carbon black-filled elastomers than in unfilled ones. The successful description for these phenomena can be achieved by mainly considering the non-linear properties in the stress-strain relation of elastomers which increase as extension increases and carbon black content increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Thomas, J. Polym. Sci. 18 (1955) 177.

    Article  CAS  Google Scholar 

  2. E. H. Andrews, Proc. Phys. Soc. 77 (1961) 483.

    Article  Google Scholar 

  3. W. G. Knauss, Exp. Mech. 8 (1968) 177.

    Article  Google Scholar 

  4. Y. Fukahori, PhD thesis, University of London (1976).

  5. E. H. Andrews and Y. Fukahori, J. Mater. Sci. 12 (1977) 1307.

    Article  CAS  Google Scholar 

  6. R. S. Rivlin, Philos. Trans. R. Soc. 241 (1948) 379.

    Article  Google Scholar 

  7. P. B. Lindley, J. Strain Anal. 6 (1971) 45.

    Article  CAS  Google Scholar 

  8. Idem. ibid. 6 (1971) 279.

    Article  Google Scholar 

  9. S. Kawabata, M. Matsuda, K. Tei and H. Kawai, Macromolecules 14 (1981) 154.

    Article  CAS  Google Scholar 

  10. Y. Fukahori and W. Seki, Polymer 33 (1992) 502.

    Article  CAS  Google Scholar 

  11. Y. Fukahori, W. Seki, Y. Iseda and T. Matsunaga, “Composites '86”, Proceedings of the 3rd Japan-US Conference on Composite Materials (1986) p. 397.

  12. W. Seki, Y. Fukahori, Y. Iseda and T. Matsunaga, Rubb. Chem. Tech. 60 (1987) 856.

    Article  CAS  Google Scholar 

  13. J. N. Goodier, Trans. ASME 55 (1933) 39.

    Google Scholar 

  14. S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity”, 3rd edn (McGraw-Hill, Kogakusha, Tokyo, 1970).

    Google Scholar 

  15. A. C. Eringen, “Nonlinear Theory of Continuous Media” (McGraw-Hill, New York, 1962).

    Google Scholar 

  16. R. S. Rivlin and D. W. Saunders, Philos. Trans. R. Soc. A 243 (1951) 251.

    Article  Google Scholar 

  17. A. N. Gent and A. G. Thomas, J. Polym. Sci. 28 (1958) 625.

    Article  CAS  Google Scholar 

  18. J. T. Oden, “Finite Elements of Nonlinear Continua” (McGraw-Hill, New York, 1972).

    Google Scholar 

  19. W. H. Yang, J. Appl. Mech. (1967) 942.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukahori, Y., Seki, W. Stress analysis of elastomeric materials at large extensions using the finite element method. JOURNAL OF MATERIALS SCIENCE 28, 4143–4152 (1993). https://doi.org/10.1007/BF00351245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351245

Keywords

Navigation