Skip to main content
Log in

FeCl3-doped polyvinylidene fluoride

Part I Interpolaron hopping and optical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Infrared (350–4000 cm−1) and optical (1.15×104–2.95×104cm−1) spectra, differential thermal analysis (DTA) and d.c. electrical resistivity of FeCl3- doped polyvinylidene fluoride (PVDF) films, over the doping mass fraction range 0 ⩽ w ⩽ 0.40, have been measured. The i.r. spectra provided evidence of: (a) the presence of both α and γ phases in the undoped, and a γ phase in the doped PVDF films; (b) a head-to-head content of 20%; and (c) a different doping mode beyond a 0.25 doping level. The optical spectra resulted in two induced energy bands, and a probable interband electronic transition, due to doping. Dipole relaxation and premelting endothermic peaks were identified by DTA. Electrical conduction is thought to proceed by interpolaron hopping among the polaron and bipolaron states induced by doping. The hopping distance, R o, is calculated according to the Kuivalainen model. A numerical equation is adopted to formulate the dependence of R oon doping level and temperature. It is found that R o< CC separation length. This implies that, in doped PVDF, charge carrier hopping is not an intrachain process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kawai, Jpn. J. Phys. 8 (1969) 975.

    Article  CAS  Google Scholar 

  2. A. M. Glass, J. H. McRee and J. G. Bergman Jr, J. Appl. Phys. 42 (1971) 5219.

    Article  CAS  Google Scholar 

  3. D. K. Das-Gupta, K. Doughty and R. S. Brockley, J. Phys. D: Appl. Phys. 13 (1980) 2101.

    Article  CAS  Google Scholar 

  4. R. M. Faria, J. S. Nogueira and N. Alves, ibid. 25 (1992) 1518.

    Article  CAS  Google Scholar 

  5. J. E. McKinner, G. T. Davis and M. G. Broadhurst, J. Appl. Phys. 51 (1980) 1676.

    Article  Google Scholar 

  6. F. I. Mopsik and A. S. De Reggi, Appl. Phys. Lett. 44 (1984) 65.

    Article  CAS  Google Scholar 

  7. M. Kobayashi, K. Tashiro and H. Tadokoro, Macromolecules 8 (1975) 158.

    Article  CAS  Google Scholar 

  8. R. Zhang and P. L. Taylor, J. Chem. Phys. 94 (1991) 3207.

    Article  CAS  Google Scholar 

  9. A. Tawansi, H. I. Abdel-Kader, W. Balachandran and E. M. Abdel-Razek, J. Mater. Sci. In Press.

  10. A. Tawansi, N. Kinawy and M. El-Mitwally, ibid. 24 (1989) 2497.

    Article  Google Scholar 

  11. I. Fleming and D. H. Williams, “spectroscopic Methods In Organic Chemistry” (McGraw-Hill, New York, 1966) pp. 56.

    Google Scholar 

  12. G. Zerbi, Pure & Appl. Chem. 26 (1971) 499.

    Article  CAS  Google Scholar 

  13. M. A. Bachmann, W. L. Gordon and J. B. Lando, J. Appl. Phys. 50 (1979) 6106.

    Article  CAS  Google Scholar 

  14. R. Hasegawa, M. Kobayashi and H. Tadokoro, Polym. J. 3 (1972) 591.

    Article  CAS  Google Scholar 

  15. R. C. Newman, “infrared Studies Of Crystal Defects” (Taylor and Francis, London, 1973) pp. 89.

    Google Scholar 

  16. P. Kuivalainen, H. Stubb, H. Isotlo, P. Yli and C. Holmstrom, Phys. Rev. B 31 (1985) 7900.

    Article  CAS  Google Scholar 

  17. S. Eliasson, J. Phys. D: Appl Phys. 18 (1985) 275.

    Article  CAS  Google Scholar 

  18. P. C. Mehendra, S. Cband, ibid. 16 (1983) 185.

    Article  Google Scholar 

  19. M. Latour, K. Anis and R. M. Paria, ibid. 22 (1989) 806.

    Article  CAS  Google Scholar 

  20. N. F. Mott and R. W. Gurney, “electronic Processes In Ionic Crystals” (Oup, London, 1940) pp. 34.

  21. K. C. Kao, J. Phys. D: Appl. Phys. 17 (1984) 1433.

    Article  CAS  Google Scholar 

  22. A. L. Efros and B. I. Shklovskii, J. Phys. C 8 (1979) 149.

    Google Scholar 

  23. S. Kivelson, Phys. Rev. B 25 (1982) 3798.

    Article  CAS  Google Scholar 

  24. Idem., Mol. Cryst. Liq. Cryst. 77 (1981) 65.

    Article  CAS  Google Scholar 

  25. J. L. Bredas, R. R. Chance and R. Silbey, Phys. Rev. B 26 (1982) 5843.

    Article  CAS  Google Scholar 

  26. S. Kivelson, Phys. Rev. Lett. 46 (1981) 1344.

    Article  CAS  Google Scholar 

  27. A. Tawansi, S. El-Konsol, A. F. Basha and M. M. Morsi, Acta Physica Hungarica 54(3–4) (1983) 221.

    CAS  Google Scholar 

  28. B. Movaghar, B. Pohlmann and W. Schimacher, Phil. Mag. B 41 (1980) 49.

    Article  CAS  Google Scholar 

  29. A. Tawansi, M. D. Migahed and M. I. A. El-Hamid, J. Phys. D: Appl. Phys. 20 (1987) 772.

    Article  CAS  Google Scholar 

  30. G. Pfister and H. Scher, Adv. Phys. 27 (1978) 747.

    Article  CAS  Google Scholar 

  31. G. Pfister and M. Morgan, Phil. Mag. B 41 (1980) 191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawansi, A., Abdel-Kader, H.I., El-Zalabany, M. et al. FeCl3-doped polyvinylidene fluoride. JOURNAL OF MATERIALS SCIENCE 29, 3451–3457 (1994). https://doi.org/10.1007/BF00352048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352048

Keywords

Navigation