Skip to main content
Log in

Review: Molecular analysis of the Philadelphia chromosome

  • Chromosoma Focus
  • Published:
Chromosoma Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abelson, HT, Rabstein, LS (1970) Lymphosarcoma: virus-induced thymic-independent disease in mice. Cancer Res 30: 2213–2222

    Google Scholar 

  • Baikie, AG, Court Brown, WM, Buckton, KE, Harnden, DG, Jacobs, PA, Tough, IM (1960) A possible specific chromosome abnormality in human chronic myeloid leukaemia. Nature 188: 1165–1166

    Google Scholar 

  • Bartram, CR, deKlein, A, Hagemeijer, A, vanAgthoven, T, vanKessell, AG, Bootsma, D, Grosveld, G, Ferguson-Smith, MA, Davies, T, Stone, M, Heisterkamp, N, Stephenson, JR, Groffen, J (1983) Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukemia. Nature 306: 277–280

    Google Scholar 

  • Bartram, CR, Kleihauer, E, deKlein, A, Grosveld, G, Teyssier, JR, Heisterkamp, N, Groffen, J (1985) C-abl and bcr are rearranged in a Ph1-negative CML patient. EMBO J 4: 683–686

    Google Scholar 

  • Ben-Neriah, Y, Daley, GQ, Mes-Masson, A, Witte, ON, Baltimore, D (1986) The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233: 212–214

    Google Scholar 

  • Berger, R, Chen, SJ, Chen, Z (1990) Philadelphia-positive acute leukemia. Cytogenetic and molecular aspects. Cancer Genet Cytogenet 44: 143–152

    Google Scholar 

  • Bernards, A, Rubin, CM, Westbrook, CA, Paskind, M, Baltimore, D (1987) The first intron in the human c-abl gene is at least 200 kilobases long and is a target for translocations in chronic mylogenous leukemia. Mol Cell Biol 7: 3231–3236

    Google Scholar 

  • Boveri, T (1912) Beitrag zum Studium des Chromatins in den Epithelzellen der Carcinome. Beitr Pathol 14: 249

    Google Scholar 

  • Canaani, E, Steiner-Saltz, D, Aghai, E, Gale, RP, Berrebi, A, Januszewicz, E (1984) Altered transcription of an oncogene in chronic myeloid leukemia. Lancet I: 593–595

    Google Scholar 

  • Caspersson, T, Zech, L, Johanssen, C (1970) Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res 60: 315–319

    Google Scholar 

  • Chan, LC, Karhi, KK, Rayter, SI, Heisterkamp, N, Eridani, S, Powles, R, Lawler, SD, Groffen, J, Foulkes, JG, Greaves, MF, Wiedemann, LM (1987) A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature 325: 635–637

    Google Scholar 

  • Chen, SJ, Flandrin, G, Daniel, M-T, Valensi, F, Baranger, L, Grausz, D, Bernheim, A, Chen, Z, Sigaux, F, Berger, R (1988) Philadelphia-positive acute leukemia: lineage promisculty and inconstently rearranged breakpoint cluster region. Leukemia 2: 261–273

    Google Scholar 

  • Chen, SJ, Chen, Z, Font, M-P, d'Auriol, L, Larsen, C-J, Berger, R (1989a) Structural alterations of the BCR and ABL genes in Ph1 positive acute leukemia with rearrangements in the BCR gene first intron: further evidence implicating Alu sequences in the chromosome translocation. Nucleic Acids Res 17: 7631–7642

    Google Scholar 

  • Chen, SJ, Chen, Z, d'Auriol, L, LeConiat, M, Grausz, D, Berger, R (1989b) Ph1+bcr — acute leukemias: implication of Alu sequences in a chromosomal translocation occurring within the BCR gene. Oncogene 4: 195–202

    Google Scholar 

  • Clark, SS, McLaughlin, J, Crist, WM, Champlin, R, Witte, ON (1987) Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. Science 235: 85–88

    Google Scholar 

  • Clark, SS, McLaughlin, J, Timmons, M, Pendergast, AM, Ben-Neriah, Y, Dow, LW, Crist, W, Rovera, G, Smith, SD, Witte, ON (1988) Expression of a distinctive BCR-ABL oncogene in Ph1-positive acute lymphocytic leukemia (ALL). Science 239: 775–777

    Google Scholar 

  • Collins, SJ, Kubonishi, J, Miyoshi, J, Groudine, MT (1984) Altered transcription of the c-abl oncogene in K-562 and other chronic myelogenous leukemia cells. Science 225: 72–74

    Google Scholar 

  • Collins, SJ, Coleman, H, Groudine, MT (1987) Expression of bcr and bcr/abl fusion transcripts in normal and leukemic cells. Mol Cell Biol 7: 2870–2876

    Google Scholar 

  • Cook, WD, Metcalf, D, Nicola, NA, Burgess, AW, Walker, F (1985) Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism. Cell 41: 677–683

    Google Scholar 

  • Court Brown, WM, Abbatt, JD (1955) The incidence of leukaemia in ankylosing spondylitis treated with X-rays. A preliminary report. Lancet I: 1283

    Google Scholar 

  • Crist, W, Carroll, A, Shuster, J, Jackson, J, Head, D, Borowitz, M, Behm, F, Link, M, Steuber, P, Ragab, A, Hirt, A, Brock, B, Land, V, Pullen, J (1990) Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A pediatric oncology group study. Blood 76: 4892–4894

    Google Scholar 

  • Daley, GQ, Baltimore, D (1988) Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific p210bcr/abl protein. Proc Natl Acad Sci USA 85: 9312–9316

    Google Scholar 

  • Daley, GQ, McLaughlin, J, Witte, ON, Baltimore, D (1987) The CML-specific p210 bcr/abl protein, unlike v-abl, does not transform NIH/3T3 fibroblasts. Science 237: 532–535

    Google Scholar 

  • Daley, GQ, VanEtten, RA, Baltimore, D (1990) Induction of chronic myelogenous leukemia in mice by the p210bcr/abl gene of the Philadelphia chromosome. Science 247: 824–830

    Google Scholar 

  • DeBraekeleer, M (1987) Variant Philadelphia translocations in chronic myeloid leukemia. Cytogenet Cell Genet 44: 215–222

    Google Scholar 

  • DeKlein, A (1987) Oncogene activation by chromosomal rearrangement in chronic myelocytic leukemia. Mutat Res 186: 161–172

    Google Scholar 

  • DeKlein, A, vanKessel, AG, Grosveld, G, Bartram, CR, Hagemeijer, A Bootsma, D, Spurr, NK, Heisterkamp, N, Groffen, J, Stephenson, JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia. Nature 300: 765–767

    Google Scholar 

  • DeKlein, A, Hagemeijer, A, Bartram, CR, Houwen, R, Hoefsloot, L, Carbonell, F, Chan, L, Barnett, M, Greaves, M, Kleihauer, E, Heisterkamp, N, Groffen, J, Grosveld, G (1986) bcr rearrangement and translocation of the c-abl oncogene in Philadelphia positive acute lymphoblastic leukemia. Blood 68: 1369–1375

    Google Scholar 

  • Dhut, S, Dorey, EL, Horton, MA, Garnesan, TS, Young, BD (1988) Identification of two normal bcr gene products in the cytoplasm. Oncogene 3: 561–566

    Google Scholar 

  • Dobrovic, A, Trainor, K, Morley, AA (1988) Detection of the molecular abnormality in chronic myeloid leukemia by use of the polymerase chain reaction. Blood 72: 2063–2065

    Google Scholar 

  • Dobrovic, A, Morley, AA, Seshadri, R, Januszewicz, EH (1991) Molecular diagnosis of Philadelphia negative CML using the polymerase chain reaction and DNA analysis: clinical features and course of M-bcr negative and M-bcr positive CML. Leukemia 5: 187–190

    Google Scholar 

  • Eisenberg, A, Silver, R, Soper, L, Arlin, Z, Coleman, M, Bernhardt, B, Benn, P (1988) The location of breakpoints within the breakpoint cluster region (bcr) of chromosome 22 in chronic myeloid leukemia. Leukemia 2: 642–647

    Google Scholar 

  • Elefanty, AG, Hariharan, IK, Cory, S (1990) bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J 9: 1069–1078

    Google Scholar 

  • Erikson, J, Griffin, CA, ar-Rushdi, A, Valtieri, M, Hoxie, J, Finan, J, Emanuel, BS, Rovera, G, Nowell, PC, Croce, CM (1986) Heterogeneity of chromosome 22 breakpoint in Philadelphia-positive (Ph+) acute lymphocytic-leukemia. Proc Natl Acad Sci USA 83: 1807–1811

    Google Scholar 

  • Fainstein, E, Marcelle, C, Rosner, A, Canaani, E, Gale, RP, Dreazen, O, Smith, SD, Croce, CM (1987) A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemia. Nature 330: 386–388

    Google Scholar 

  • Fialkow, PJ, Jacobson, RJ, Papayannopoulou, T (1977) Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage Am J Med 63: 125–130

    Google Scholar 

  • Gale, RP, Butturini, A (1990) Ph — chromosome positive acute leukemias and acute phase CML: one or two diseases? Two. Leuk Res 14: 295–297

    Google Scholar 

  • Gale, RP, Canaani, E (1984) An 8-kilobase abl RNA transcript in chronic myelogenous leukemia. Proc Natl Acad Sci USA 81: 5648–5652

    Google Scholar 

  • Geurts Van Kessel, AHM (1982) Decreased tumorigenicity of Chinese hamster cells after fusion with tumorigenic mouse myeloid leukemia cells. Cytogenet Cell Genet 34: 253–256

    Google Scholar 

  • Goff, SP, Gilboa, E, Witte, ON, Baltimore, D (1980) Structure of the Abelson murine leukemia virus genome and the homologous cellular gene: studies with cloned viral DNA. Cell 22: 777–785

    Google Scholar 

  • Groffen, J, Stephenson, JR, Heisterkamp, N, deKlein, A, Bartram, CR, Grosveld, G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36: 93–99

    Google Scholar 

  • Grossman, A, Silver, RT, Arlin, Z, Coleman, M, Camposano, E, Gascon, P, Benn, PA (1989) Fine mapping of chromosome 22 breakpoints within the breakpoint cluster region (bcr) implies a role for bcr exon 3 in determining disease duration in chronic myeloid leukemia. Am J Hum Genet 45: 729–738

    Google Scholar 

  • Gunz, FW, Henderson, ES (1983) Leukemia, 4th edn. Grune & Stratton, New York, p 986

    Google Scholar 

  • Hagemeijer, A, Bartram, CR, Smit, EME, vanAgthoven, AJ, Bootsma, D (1984) Is the chromosomal region 9q34 always involved in variants of the Ph1 translocation? Cancer Genet Cytogenet 13: 1–16

    Google Scholar 

  • Hagemeijer, A, deKlein, A, Godde-Salz, E, Turc-Carel, C, Smit, EME, vanAgthoven, AJ, Grosveld, GC (1985) Translocation of c-abl to “masked” Ph in chronic myeloid leukemia. Cancer Genet Cytogenet 18: 95–104

    Google Scholar 

  • Hariharan, IK, Adams, JM (1990) cDNA sequence for human bcr, the gene that translocate to the abl oncogene in chronic myeloid leukemia. EMBO J 6: 115–119

    Google Scholar 

  • Hariharan, IK, Adams, JM, Cory, S (1988) bcr-abl oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia. Oncogene Res 3: 387–399

    Google Scholar 

  • Hariaharan, IK, Harris, AW, Crawford, M, Abud, H, Webb, E, Cory, S, Adams, JM (1989) A bcr-v-abl oncogene induces lymphomas in transgenic mice. Mol Cell Biol 9: 2798–2805

    Google Scholar 

  • Hauschka, TS (1953) Cell population studies on mouse ascites tumours. Transactions NY Acad Sci Ser II 16: 64–73

    Google Scholar 

  • Hayata, I, Kakati, S, Sandberg, AA (1973) A new translocation related to the Philadelphia chromosome. Lancet II: 1385

    Google Scholar 

  • Heim, S, Mitelman, F (1987) Cancer cytogenetics. Liss, New York, p 309

    Google Scholar 

  • Heisterkamp, N, Groffen, J, Stephenson, JR, Spurr, NK, Goodfellow, PN, Solomon, E, Carritt, B, Bodmer, WF (1982) Chromosomal localisation of human cellular homologues of two viral oncogenes. Nature 299: 747–749

    Google Scholar 

  • Heisterkamp, N, Stephenson, JR, Groffen, J, Hansen, PF, deKlein, A, Bartram, CR, Grosveld, G (1983) Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 306: 239–242

    Google Scholar 

  • Heisterkamp, N, Stam, K, Groffen, J, deKlein, A, Grosveld, G (1985) Structural organization of the bcr gene and its role in the Ph1 translocation. Nature 315: 758–761

    Google Scholar 

  • Heisterkamp, N, Jenster, G, tenHoeve, J, Zovich, D, Pattengale, PK, Groffen, J (1990) Acute leukaemia in bcr/abl transgenic mice. Nature 344: 251–253

    Google Scholar 

  • Hermans, A, Heisterkamp, N, vonLindern, M, vanBaal, S, Meijer, D, van derPlas, D, Wiedemann, LM, Groffen, J, Bootsma, D, Grosveld, G (1987) Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell 51: 33–40

    Google Scholar 

  • Hermans, A, Gow, J, Selleri, L, vonLindern, M, Hagemeijer, A, Wiedemann, LM, Grosveld, G (1988) bcr-abl oncogene activation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia 2: 628–633

    Google Scholar 

  • ISCN (1985) An international system for human cytogenetic nomenclature: birth defects. Original article series, vol 21. The National Foundation, New York

    Google Scholar 

  • Kawasaki, ES, Clark, SS, Coyne, MY, Smith, SD, Champlin, R, Witte, ON, McCormick, FP (1988) Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA 85: 5698–5702

    Google Scholar 

  • Kelliher, MA, McLaughlin, J, Witte, ON, Rosenberg, N (1990) Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci USA 87: 6649–6653

    Google Scholar 

  • Kloetzer, W, Kurzrock, R, Smith, L, Talpaz, M, Spiller, M, Gutterman, JU, Arlinghaus, R (1985) The human cellular abl gene product in the chronic myelogenous leukemia cell line K562 has an associated tyrosine protein kinase activity. Virology 140: 230–238

    Google Scholar 

  • Konopka, JB, Witte, ON (1985) Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. Mol Cell Biol 5: 3116–3123

    Google Scholar 

  • Konopka, JB, Watanabe, SM, Witte, ON (1984) An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37: 1035–1042

    Google Scholar 

  • Kurzrock, R, Shtalrid, M, Romero, P, Kloetzer, WS, Talpaz, M, Trujillo, JM, Blick, M, Beran, M, Gutterman, JU (1987a) A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukaemia. Nature 325: 631–635

    Google Scholar 

  • Kurzrock, R, Shtalrid, M, Talpaz, M, Kloetzer, WS, Gutterman, JU (1987b) Expression of c-abl in Philadelphia-positive acute myelogenous leukemia. Blood 70: 1584–1588

    Google Scholar 

  • Lange, RD, Moloney, WC, Yamawaki, T (1954) Leukemia in atomic bomb survivors. I General observations. Blood 15: 313

    Google Scholar 

  • Lee, M-S, Chang, K-S, Cabanillas, F, Freireich, EJ, Trujillo, JM, Stass, SA (1987) Detection of minimal residual cells carrying the t(14; 18) by DNA sequence amplification. Science 237: 175–178

    Google Scholar 

  • Levan, A (1956) Chromosome studies on some human tumors and tissues of normal origin grown in vivo and in vitro at the Sloan-Kettering Institute. Cancer 9: 648–663

    Google Scholar 

  • Li, W, Dreazen, O, Kloetzer, W, Gale, RP, Arlinghaus, RB (1989) Characterization of bcr gene products in hematopoietic cells. Oncogene 4: 127–138

    Google Scholar 

  • Lifshitz, B, Fainstein, E, Marcelle, C, Shtivelman, E, Amson, R, Gale, RP, Canaani, E (1988) bcr genes and transcripts. Oncogene 2: 113–117

    Google Scholar 

  • Lugo, TG, Witte, ON (1989) The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc. Mol Cell Biol 9: 1263–1269

    Google Scholar 

  • Lugo, TG, Pendergast, A, Muller, AJ, Witte, ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247: 1079–1082

    Google Scholar 

  • Makino, S (1954) Further evidence favouring the concept of the stern cell in ascites tumors of rats. Ann NY Acad Sci Ser II 16: 818–830

    Google Scholar 

  • McLaughlin, J, Chianese, W, Witte, ON (1987) In vitro transformation of immature hematopoietic cells by the p210 bcr/abl oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci USA 84: 6558–6562

    Google Scholar 

  • McLaughlin, J, Chianese, E, Witte, ON (1989) Alternative forms of the BCR-ABL oncogene have quantitatively different potencies for stimulation of immature lymphoid cells. Mol Cell Biol 9: 1866–1874

    Google Scholar 

  • Metcalf, D, Moore, MAS, Sheridan, JW, Spitzer, G (1974) Responsiveness of human granulocytic leukemic cells to colony-stimulating factor. Blood 43: 847–859

    Google Scholar 

  • Morris, CM, Reeve, AE, Fitzgerald, PH, Hollings, PE, Beard, MEJ, Heaton, DC (1986) Genomic diversity correlates with clinical variation in Ph1-negative chronic myeloid leukaemia. Nature 320: 281–283

    Google Scholar 

  • Nowell, PC, Hungerford, DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132: 1497

    Google Scholar 

  • Oliff, A, Agranowsky, O, McKinney, MD, Murty, VVVS, Banchwitz, R (1985) Friend murine leukemia virus-immortalized myeloid cells are converted into tumorigenec cell lines by Abelson leukemia virus. Proc Natl Acad Sci USA 82: 3306–3310

    Google Scholar 

  • Prakash, O, Yunis, JJ (1984) High resolution chromosomes of the t(9; 22) positive leukemias. Cancer Genet Cytogenet 11: 361–367

    Google Scholar 

  • Pugh, WC, Pearson, M, Vardiman, JW, Rowley, JD (1985) Philadelphia chromosome-negative chronic myelogenous leukemia: a morphological reassessment. Br J Haematol 60: 457–467

    Google Scholar 

  • Raskind, WH, Fialkow, PJ (1987) The use of cell markers in the study of human hematopoietic neoplasia. Adv Cancer Res 49: 127

    Google Scholar 

  • Rassool, F, Martiat, P, Taj, A, Klisak, I, Goldman, J (1990) Interstitial insertion in varying amounts of ABL-contaisning genetic material into chromosome 22 in Ph-negative CML. Leukemia 4: 273–277

    Google Scholar 

  • Ribeiro, RC, Abromowitch, M, Raimondi, SC, Murphy, SB, Behm, F, Williams, DL (1987) Clinical and biologic hallmarks of the Philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood 70: 948–953

    Google Scholar 

  • Rodenhuis, S, Smets, LA, Slater, RM, Behrendt, H, Veerman, AJP (1985) Distinguishing the Philadelphia chromosome of acute lymphoblastic leukemia from its counterpart in chronic myeloid leukemia. New Engl J Med 313: 51–52

    Google Scholar 

  • Rogers, J (1985) Oncogene chromosome breakpoints and Alu sequences. Nature 317: 559

    Google Scholar 

  • Rowley, JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290–293

    Google Scholar 

  • Scher, CD, Siegler, R (1975) Direct transformation of 3T3 cells by Abelson murine leukemia virus. Nature 253: 729–731

    Google Scholar 

  • Shtalrid, M, Talpaz, M, Blick, M, Romero, P, Kantarjian, H, Taylor, K, Trujillo, J, Schachner, J, Gutterman, JU, Kurzrock, R (1988) Philadelphia-negative chronic myelogenous leukemia with bcr rearrangement: molecular analysis, clinical characteristics, and response to therapy. J Clin Oncol 6: 1569–1575

    Google Scholar 

  • Shtivelman, E, Lifshitz, B, Gale, RP, Canaani, E (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukemia. Nature 315: 550–554

    Google Scholar 

  • Shtivelman, E, Lifshitz, B, Gale, RP, Roe, BA, Canaani, E (1986) Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell 47: 277–284

    Google Scholar 

  • Sonta, S, Sandberg, AA (1977) Chromosomes and causation of human cancer and leukemia. XXIV. Unusual and complex Ph1 translocations and their clinical significance. Blood 50: 691–696

    Google Scholar 

  • Stam, K, Heisterkamp, N, Reynolds, FH, Groffen, J (1987) Evidence that the phl gene encodes a 160 000-Dalton phosphoprotein with associated kinase activity. Mol Cell Biol 7: 1955–1960

    Google Scholar 

  • Third International Workshop on Chromosomes in Leukemia (1981) Cancer Genet Cytogenet 4: 101–110

    Google Scholar 

  • Timmons, MS, Witte, ON (1989) Structural characterization of the BCR gene product. Oncogene 4: 559–567

    Google Scholar 

  • van derPlas, DC, Hermans, ABC, Soekarman, D, Smit, EME, deKlein, A, Smadja, N, Alimena, G, Goudsmit, R, Grosveld, G, Hagemeijer, A (1989) Cytogenetic and molecular analysis in Philadelphia negative CML. Blood 73: 1038–1044

    Google Scholar 

  • vanEtten, RA, Jackson, P, Baltimore, D (1989) The mouse type IV c-abl gene product in a nuclear protein and activation of transforming ability is associated with cytoplasmic location. Cell 58: 669–678

    Google Scholar 

  • Walker, LC, Ganesan, TS, Dhut, S, Gibbons, B, Lister, TA, Rothbard, J, Young, BD (1987) Novel chimaeric protein expressed in Philadelphia positive acute lymphoblastic leukaemia. Nature 329: 851–853

    Google Scholar 

  • Whang-Peng, J, Canellos, GP, Carbone, PP, Tjio, JH (1968) Clinical implications of cytogenetic variants in chronic myelocytic leukemia (CML). Blood 32: 755–766

    Google Scholar 

  • Wiedemann, LM, Karhi, KK, Shivji, MKK, Rayter, SI, Pegram, SM, Dowden, G, Bevan, D, Will, A, Galton, DAG, Chan, LC (1988) The correlation of breakpoint cluster region rearrangements and p210 phl/abl expression with morphological analysis of Phnegative chronic myeloid leukemia and other myeloproliferative diseases. Blood 71: 349–355

    Google Scholar 

  • Witte, ON, Goff, S, Rosenberg, N, Baltimore, D (1980) A transformation-defective mutant of Abelson murine leukemia virus lacks protein kinase activity. Proc Natl Acad Sci USA 77: 4993–4997

    Google Scholar 

  • Young, JC, Witte, ON (1988) Selective transformation of primitive lymphoid cells by the BCR/ABL oncogene expressed in long-term lymphoid or myeloid cultures. Mol Cell Biol 8: 4079–4087

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrovic, A., Peters, G.B. & Ford, J.H. Review: Molecular analysis of the Philadelphia chromosome. Chromosoma 100, 479–486 (1991). https://doi.org/10.1007/BF00352198

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352198

Keywords

Navigation