Skip to main content
Log in

Anisotropic photoluminescence characteristics of Al0.08Ga929292As single quantum well laser structure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A nominal well width (20 nm) of Al0.08Ga0.92As quantum well structure has been fabricated by molecular beam epitaxy technique with the aim of obtaining a lasing device. The temperature evolution of quantum well photoluminescence was studied in the range 10–300 K which shows excitons being trapped at the interfacial defects below 100 K. The linear polarization effects in the photoluminescence have been studied for the incident and collected light propagating parallel to the plane of the well layer. In a very careful study, the luminescence was found to be fully polarized for the incident electric vector parallel to well layers, while it showed depolarized behaviour for the incident electric vector perpendicular to the well layers. The earlier conclusions based on photoluminescence excitation and absorption studies of heavy- and light-hole emissions are supported. The 20 nm quantum well structure has been corroborated using scanning tunnelling microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. B. Miller, D. S. Chemla, P. W. Smith, A. C. Gossard and W. T. Tsang, Appl. Phys. B28 (1982) 96.

    Google Scholar 

  2. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard and W. Weigmann, IEEE J. Quantum Electron. QE-21 (1985) 117.

    Article  CAS  Google Scholar 

  3. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigmann, T. H. Wood and C. A. Burrus, Appl. Phys. Lett. 45 (1984) 13.

    Article  CAS  Google Scholar 

  4. Y. Silberberg, P. W. Smith, D. J. Eilenberger, D. A. B. Miller, A. C. Gossard and W. Weigmann, Opt. Lett. 9 (1984) 507.

    Article  CAS  Google Scholar 

  5. M. Yamanishi and I. Szemune, Jpn. J. Appl. Phys. 23 (1984) L35.

    Article  Google Scholar 

  6. Y.-C. Chang and J. N. Schulman, Appl. Phys. Lett. 43 (1983) 536.

    Article  CAS  Google Scholar 

  7. H. Iwamura, T. Saku, H. Kobayashi and Y. Horikoshi, J. Appl. Phys. 54 (1983) 2692.

    Article  CAS  Google Scholar 

  8. J. S. Weiner, D. R. Chemla, D. A. B. Miller, H. A. Haus, A. C. Gossard, W. Weigmann and C. A. Burrus, Appl. Phys. Lett. 47 (1985) 664.

    Article  CAS  Google Scholar 

  9. A. Baliga and N. G. Anderson, Ibid.60 (1992) 283.

    Article  CAS  Google Scholar 

  10. G. Binning, C. Gerber, H. Rohrer and E. Weibel, Phys. Rev. Lett. 49 (1982) 57.

    Article  CAS  Google Scholar 

  11. H. W. M. Salemink, M. B. Johnson and O. Alberktsen, J. Vac. Sci. Technol. B12 (1994) 362.

    Article  Google Scholar 

  12. R. M. Feenstra, Semicond. Sci. Technol. 9 (1994) 2157.

    Article  CAS  Google Scholar 

  13. J. E. Fouquet and A. E. Seigman, Appl. Phys. Lett. 46 (1985) 282.

    Google Scholar 

  14. D. S. Chemla, D. Miller, P. Smith, A. C. Gossard and W. Weigmann, IEEE J. Quantum Electron. QE-20 (1984) 265.

    Article  CAS  Google Scholar 

  15. E. H. Bottcher, K. Kettere, D. Bimberg, G. Weimann and W. Schlapp, Appl. Phys. Lett. 50 (1987) 1074.

    Article  Google Scholar 

  16. R. L. Greene and K. K. Bajaj, Solid State Commun. 45 (1983) 831.

    Article  CAS  Google Scholar 

  17. C. Delalande, M. H. Meynadier and M. Voos, Phys. Rev. B31 (1984) 2497.

    Google Scholar 

  18. J. E. Zucker, A. Pinczuk, D. S. Chemla and A. C. Gossard, Phys. Rev. B35 (1987) 2892.

    Article  Google Scholar 

  19. H. Iwamura, H. Kobayashi and H. Okamoto, Jpn. J. Appl. Phys. 23 (1984) L795.

    Article  Google Scholar 

  20. M. S. Skolnick, K. J. Nash, M. K. Saker, S. J. Bass, P. A. Claxton and J. S. Roberts, Appl. Phys. Lett. 50 (1987) 1855.

    Article  Google Scholar 

  21. J. Lee, E. S. Kotcles and M. O. Vassel, Phys. Rev. B33 (1986) 5512.

    Article  Google Scholar 

  22. J. Lee and M. O. Vessell, Jpn. J. Appl Phys. 23 (1984) 1086.

    Article  CAS  Google Scholar 

  23. D. D. Sell, S. E. Stokowski, R. Dingle and J. V. Dilrenzo, Phys. Rev. B7 (1973) 4568.

    Article  Google Scholar 

  24. C. Weisbuch, in “Physics and Applications of Quantum Wells and Superlattices”, Vol. 170 of NATO Advanced Studies Institute Series B: Physics, edited by E. E. Mendez and K. von Klitzing (Plenum Press, New York, 1987) pp. 261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobal, P.S., Bist, H.D., Morell, G. et al. Anisotropic photoluminescence characteristics of Al0.08Ga929292As single quantum well laser structure. JOURNAL OF MATERIALS SCIENCE 31, 4793–4799 (1996). https://doi.org/10.1007/BF00355863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355863

Keywords

Navigation