Skip to main content
Log in

Microstructure and mechanical characteristics of alpha-alumina-based fibres

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The high-temperature mechanical behaviour of alumina-based ceramic fibres has been investigated by the comparison of a dense pure alumina fibre, a porous pure alumina fibre and a zirconia-reinforced dense fibre. Tensile and creep tests have been conducted up to 1300°C in air in parallel with microstructural investigations on the as-received and tested fibres. Room-temperature behaviour of the fibres is close to that of bulk materials having the same microstructure, but the fibre form allows higher failure stresses to be attained. High-temperature deformation of the three fibres is achieved by grain-boundary sliding (\(\dot \varepsilon \propto \sigma ^2 \)), and is accompanied by isotropic grain growth. The specific microstructures of each fibre induce differences in the creep threshold levels as a function of temperature and stress and also in creep rates and resistance to damage. Despite better resistance to creep and damage of the zirconia-reinforced fibre, alumina-based fibres are limited to applications below 1100°C. Grain boundaries are the principal cause of mechanical degradation at high temperature with these fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Dhingra, Philos. Trans. R. Soc. Lond. A 294 (1980) 411.

    Google Scholar 

  2. J. C. Romine, Ceram. Eng. Sci. Proc. 8 (1987) 755.

    CAS  Google Scholar 

  3. “Almax”, commercial literature of Mitsui Mining (1993).

  4. A. R. Bunsell, J. W. S. Hearle and R. D. Hunter, J. Phys. E Sci. Instrum. 4 (1971) 868.

    Article  Google Scholar 

  5. M. H. Berger and A. R. Bunsell, J. Mater. Sci. Lett. 12 (1993) 825.

    Article  CAS  Google Scholar 

  6. D. R. Clarke, J. Am. Ceram. Soc. 63 (1980) 104.

    Google Scholar 

  7. V. Lavaste, J. Besson, M. H. Berger and A. R. Bunsell, ibid., in press.

    Google Scholar 

  8. R. M. Cannon, in “Advances in Ceramics”, Vol. 10, “Structure and properties of MgO and Al2O3 ceramics”, edited by W. D. Kingery (American Ceramic Society, Columbus, 1984) p. 818.

    Google Scholar 

  9. R. W. Davidge, R. C. Piller and A. Briggs et al., in “Technical Ceramics”, edited by H. Nosbusch and I. V. Mitchell (Elsevier, 1988) p. 163.

  10. A. G. Evans and Y. Fu, in “Advances in Ceramics”, Vol. 10, “Structure and properties of MgO and Al2O3 ceramics”, edited by W. D. Kingery (American Ceramic Society, Columbus, 1984) p. 697.

    Google Scholar 

  11. J. D. Birchall, Trans. J. Br. Ceram. Soc. 82 (1983) 143.

    Google Scholar 

  12. R. L. Coble and W. D. Kingery, J. Am. Ceram. Soc. 39 (1956) 377.

    Google Scholar 

  13. J. K. MacKenzie, Proc. Phys. Soc. London B 63 (1950) 2.

    Google Scholar 

  14. F. F. Lange, J. Mater. Sci. 17 (1982) 247.

    CAS  Google Scholar 

  15. K. M. Liang, G. Orange and G. Fantozzi, in “Proceedings of the 11th Risø International Symposium on Metallurgy and Material-Science”, September 1990 edited by J. J. Bentzen, J. B. Bilde Sorensen, N. Christiansen, A. Horswell and B. Ralph (Risø National Laboratory, Roskilde, Denmark, 1990) p. 389.

    Google Scholar 

  16. M. Rühle, A. Strecker, D. Waidelich and B. Kraus, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Rühle and A.H. Heuer (American Ceramic Society, Columbus, 1984) p. 256.

    Google Scholar 

  17. C. Carry, in “MRS International meeting on Advanced Materials”, Vol. 7, “Superplasticity”, Tokyo, May 1988, edited by M. Kobayashi and F. Wakai (Material Research Society, Pittsburg, 1989) p. 199.

    Google Scholar 

  18. R. M. Cannon, W. H. Rhodes and A. H. Heuer, J. Am. Ceram. Soc. 63 (1980) 46.

    CAS  Google Scholar 

  19. A. H. Chokshi, J. Mater. Sci. 25 (1990) 322.

    Article  Google Scholar 

  20. D. J. Pysher and R. E. Tressler, Ceram. Eng. Sci. Proc. 8 (1987) 218.

    Google Scholar 

  21. T. G. Langdon, Philos. Mag. 22 (1970) 689.

    Google Scholar 

  22. R. C. Gifkins, Metall. Trans. 7A (1976) 1225.

    CAS  Google Scholar 

  23. L. Priester and S. Lartigue, J. Eur. Ceram. Soc. 8 (1991) 47.

    Article  CAS  Google Scholar 

  24. K. R. Venkatachari and R. Raj, J. Am. Ceram. Soc. 69 (1986) 135.

    CAS  Google Scholar 

  25. E. A. Arzt, M. F. Ashby and R. A. Verrall, Acta Metall. 31 (1983) 1977.

    CAS  Google Scholar 

  26. W. R. Cannon and T. G. Langdon, J. Mater. Sci. 23 (1988) 1.

    Article  CAS  Google Scholar 

  27. Idem, ibid. 18 (1983) 1.

    CAS  Google Scholar 

  28. M. F. Ashby and R. A. Verrall, Acta Metall. 21 (1973) 149.

    CAS  Google Scholar 

  29. R. C. Gifkins, J. Mater. Sci. 13 (1978) 1926.

    Article  CAS  Google Scholar 

  30. R. Martinez, R. Duclos and J. Crampon, Scripta Metall. Mater. 24 (1990) 1979.

    Article  CAS  Google Scholar 

  31. A. G. Evans, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Rühle and A. H. Heuer (American Ceramic Society, Columbus, 1984) p. 193.

    Google Scholar 

  32. J. Weertman, Metall. Trans. 5 (1974) 1743.

    Google Scholar 

  33. R. M. Cannon and R. L. Coble, in “Deformation of ceramics Materials”, edited by R. C. Bradt and R. E. Tressler (Plenum Press, New York, 1975) p. 61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavaste, V., Berger, M.H., Bunsell, A.R. et al. Microstructure and mechanical characteristics of alpha-alumina-based fibres. JOURNAL OF MATERIALS SCIENCE 30, 4215–4225 (1995). https://doi.org/10.1007/BF00361500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00361500

Keywords

Navigation