Skip to main content
Log in

Determination of the wall slip velocity in the flow of a SBR compound

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Rubber compounds are known to exhibit slip at the wall in particular flow conditions. The slip velocity is usually determined by using the classical Mooney method. The rheological behavior of a styrene butadiene rubber (SBR) compound was studied with three different rheometers. Biconical rotational, capillary and slit die rheometers were used to define the true viscous behavior of the compound and the slip velocity. It was shown that it was impossible to apply the Mooney method to our experimental data. New characterizations were thus developed for both capillary and slit die experiments. They were based on the dependency of the slip velocity on the local flow gap. Contrarily to the Mooney method, they provided physically acceptable results and led to a power-law relationship between wall slip, wall shear stress and local geometry of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badura R, Klüppel M, Schuster RH (1992) Interaction of rubber and softener and the effect on rheological data. J Appl Polym Sci, Appl Polym Symp 50:95–107

    Google Scholar 

  • Blyler LL, Hart AC (1970) Capillary flow instability of ethylene polymer melts. Polym Eng Sci 10:193

    Google Scholar 

  • Brzoskowski R, Kubota K, Chung K, White JL, Weissert FC, Nakajima N, Min K (1987) Experimental and theoretical study of the flow characteristics of rubber compounds in an extruder screw. Int Polym Proc 1:130–136

    Google Scholar 

  • Chauffoureaux JC, Dehennau C, Van Rijckevorsel J (1979) Flow and thermal stability of rigid PVC. J Rheol 23:1

    Google Scholar 

  • Decker GE, Roth FL (1953) Influence of variation in rotors, dies and rate of shear on Mooney viscosity. Indian Rubber World 128:339–343

    Google Scholar 

  • El Kissi N, Piau JM (1989) Ecoulement de fluides polymères enchevétrés. Modélisation du glissement macroscopique à la paroi. CR Acad Sci Paris 309:7–9

    Google Scholar 

  • Ertong S, Schümmer P (1980) On the rheological properties of rubber compounds containing different carbon black concentrations. In: Oliver DR (Ed) Third European Rheology Conference. Elsevier, London, p 153–155

    Google Scholar 

  • Geiger K (1989) Rheologische Charakterisierung von EPDM Kautschukmischungen mittels Kapillar-Rheometer Systemen. Kautsch Gummi Kunstst 42:273–283

    Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1991) Wall slip of molten high density polyethylene. Sliding plate rheometer studies. J Rheol 35:497–523

    Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1992) Wall slip of molten high density polyethylene. Capillary rheometer studies. J Rheol 36:703–741

    Google Scholar 

  • Jepsen C, Räbiger N (1988) Untersuchungen zum Wandgleitverhalten von Kautschukmischungen an einem Hochdruck-Kapillar-Viskometer. Kautsch Gummi Kunstst 41:342–352

    Google Scholar 

  • Kalika DS, Denn MM (1987) Wall slip and extrudate distortion in linear low-density polyethylene. J Rheol 31:815–834

    Google Scholar 

  • Kanu RC, Shaw MT (1982) Rheology of polymer blends: simultaneous slippage and entrance pressure loss in the EPDM/Viton system. Polym Eng Sci 22:507–511

    Google Scholar 

  • Knappe W, Krümbock E (1986) Slip flow of non-plasticized PVC-compounds. Rheol Acta 25:296–307

    Google Scholar 

  • Lau HC, Schowalter WR (1986) A model for adhesive failure of viscoelastic fluids during flow. J Rheol 30:193–206

    Google Scholar 

  • Laun HM (1983) Polymer melt rheology with a slit die. Rheol Acta 22:171–185

    Google Scholar 

  • Leblanc JL, Villemaire JP, Vergnes B, Agassant JF (1989) Effect of wall slippage on pressure drop in converging dies when extruding natural rubber compounds. Plast Rubber Proc Appl 11:53–57

    Google Scholar 

  • Lupton JM, Regester JW (1965) Melt flow of polyethylene at high rates. Polym Eng Sci 5:235

    Google Scholar 

  • Ma CY, White JL, Weissert FC, Isayev AI, Nakajima N, Min K (1985) Flow patterns in elastomers and their carbon black compounds during extrusion through dies. Rubber Chem Tech 58:815

    Google Scholar 

  • Menges G, Wortberg J, Geisbüsch P, Targiel G (1981) Fließverhalten von Kautschukmischungen. Kautsch Gummi Kunstst 34:631–636

    Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Google Scholar 

  • Mooney M (1934) A shearing disk plastometer for unvulcanized rubber. Ind Eng Chem Anal Ed 6:147

    Google Scholar 

  • Mooney M (1958) The Rheology of raw elastomers. In: Eirich FR (Ed) rheology: theory and applications. Academic Press, New York, p 181–233

    Google Scholar 

  • Mourniac P (1991) Le problème du glissement à la paroi dans les ecoulements de mélanges d'elastomères. Ph D Dissertation, Ecole des Mines de Paris, Sophia-Antipolis

    Google Scholar 

  • Natov M, Avramova J, Vassileva S (1980) Das Wandgleiten beim Fließen von Polymerschmelzen durch Kapillaren mit kreisförmigem Querschnitt. Rheol Acta 19:83–87

    Google Scholar 

  • Ramamurthy AV (1986) Wall slip in viscous fluids and influence of materials of construction. J Rheol 30:337–357

    Google Scholar 

  • Turner DM, Moore MD (1980) The contribution of wall slip in the flow of rubber. Plastics Rubber Proc 5:81–84

    Google Scholar 

  • Uhland E (1976) Modell zur Beschreibung des Fließens wandgleitender Substanzen durch Düsen. Rheol Acta 15:30

    Google Scholar 

  • Vergnes B, d'Halewyn S, Boube MF (1992) Wall slip and instabilities in the flow of EPDM compounds. XIth Int Congress on Rheology, Brussels

  • White JL, Han MH, Nakajima N, Brzoskowski R (1991) The influence of materials of construction on biconical rotor and capillary measurements of shear viscosity of rubber and its compounds and considerations of slippage. J Rheol 35:167–189

    Google Scholar 

  • Wiegreffe S (1991) Untersuchungen zum Wandgleitverhalten von EPDM und SBR. Kautsch Gummi Kunstst 44:216–221

    Google Scholar 

  • Worth RA, Parnaby J, Helmy HAA (1977) Wall slip and its implications in the design of single screw melt-fed extruders. Polym Eng Sci 17:257–265

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mourniac, P., Agassant, J.F. & Vergnes, B. Determination of the wall slip velocity in the flow of a SBR compound. Rheola Acta 31, 565–574 (1992). https://doi.org/10.1007/BF00367011

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367011

Key words

Navigation