Skip to main content
Log in

Microstructural and magnetic characterization of alumina-iron nanocomposites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Iron-alumina nanocomposite powders containing 10 wt % iron were prepared by selective reduction of alumina-haematite solid solutions. Microstructural study showed three types of metal dispersion in the alumina matrix according to the elaboration process: iron grains that were >70 nm, most of the iron particles were <10 nm and directly epitaxied in the alumina matrix, and iron particles that were surrounded by an interfacial phase. In agreement with transmission electron miscroscopy (TEM) observations, magnetic study confirmed a distribution of the iron particles size, showing the superposition of a ferromagnetic behaviour (larger particles) and a superantiferromagnetic behaviour (smaller particles). Furthermore, analysis of thermoremanent behaviour, coercive field and dissymmetry of hysteresis loops allowed the interfacial phase surrounding some iron particles to be identified as an antiferromagnetic phase, Fe1+xAl2−xO4. Nevertheless, at the interface of metallic iron epitaxied on the alumina matrix some atomic planes always existed where iron was ionic (even if no other phase was detected). As a consequence the mean magnetic moment of iron in these nanocrystals is larger than that in bulk metallic iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. NÉEL, C.R. Hebd. Séanc. Acad. Sci. Paris 228 (1949) 664.

    Google Scholar 

  2. L. NÉEL, Ann. Geophys. 5 (1949) 99.

    Google Scholar 

  3. C. P. BEAN, J. Appl. Phys. 26 (1955) 1381.

    Article  Google Scholar 

  4. C. KITTEL, Phys.Rev. 70 (1946) 965.

    Article  CAS  Google Scholar 

  5. I. S. JACOBS and C. P. BEAN, in “Magnetism III”, edited by G. T. RADO and H. SUHL (Academic Press, New York, 1963) p. 271.

    Google Scholar 

  6. J. L. DORMANN, Revue Phys. Appl. 16 (1981) 275.

    Article  CAS  Google Scholar 

  7. P. W. SELWOOD, “Adsorption and Collective Paramagnetism” (Academic Press, New York, 1962).

    Google Scholar 

  8. G. A. MARTIN, N. CEAPHALAU, P. De MONTGOLFIER and B. IMELIK, J. Chim. Phys. 70 (1973) 1422.

    Article  CAS  Google Scholar 

  9. J. T. RICHARDSON, J. Appl. Phys. 49 (1978) 1781.

    Article  CAS  Google Scholar 

  10. A. J. FREEMAN and C. L. FU, ibid. 61 (1987) 3356.

    Article  CAS  Google Scholar 

  11. L. N. LIBERMANN, D. R. FREDKIN and H. B. SHORE, Phys. Rev. Lett. 22 (1969) 539.

    Article  Google Scholar 

  12. L. N. LIBERMANN, J. CLINTON, P. M. EDARDS and J. MATHON, ibid. 25 (1970) 232.

    Article  Google Scholar 

  13. S. OHNISHI, A. J. FREEMAN and M. WEINERT, Phys. Rev. B28 (1983) 6741.

    Article  Google Scholar 

  14. G. M. PASTOR, J. DORANTE-DAVILA and K. M. BENNEMAN, ibid. B40 (1989) 7642.

    Article  Google Scholar 

  15. S. MATSUO and I. J. NISHIDA, Phys. Soc. Jpn. 49 (1980) 1005.

    Article  CAS  Google Scholar 

  16. A. ROUSSET and X. DEVAUX, French Patent 90 09790 (1990).

  17. J. A. IMLACH and F. P. GLASSER, Trans. J. Brit. Ceram. Soc. 70 (1971) 227.

    CAS  Google Scholar 

  18. S. B. OGALE, D. M. PHASE, S. M. CHAUDARI, S. V. GHAISAS, S. M. KANETKAR, P. P. PATIL, V. G. BHIDE and S. K. DATE, Phys. Rev. B35 (1987) 1593.

    Article  Google Scholar 

  19. R. ANTON, K. HEINEMANN and H. POPPA, Vide Couches Minces 201 (1980) 121.

    CAS  Google Scholar 

  20. S. B. QADRI, J. H. CLAASSEN, P. R. BROUSSARD and S. A. WOLF, J. Less-Common Metals 155 (1989) 327.

    Article  CAS  Google Scholar 

  21. J. P. REBOUILLAT, Thése d'Etat, Université de Grenoble (1972).

  22. J. H. M. STOELINGA, R. GERSDORF and G. De VRIES, Physica 41 (1969) 457.

    Article  CAS  Google Scholar 

  23. S. FONER, A. J. FREEMAN, N. A. BLUM, R. B. FRANKEL, E. J. MCNIFF and H. C. PRADDANDE, Phys. Rev. 181 (1969) 863.

    Article  CAS  Google Scholar 

  24. A. MARCHAND, X. DEVAUX, B. BARBARA, P. MOLLARD and A. ROUSSET, to be published.

  25. B. BARBARA, J. FILIPPI, A. MARCHAND, P. MOLLARD, X. DEVAUX and A. ROUSSET, J. Phys., Paris 2 (1992) 101.

    CAS  Google Scholar 

  26. B. BARBARA, A. MARCHAND, P. MOLLARD, X. DEVAUX and A. ROUSSET, in International Workshop on Studies of Magnetic Properties of Fine Particles and Their Relevance to Materials Science, Rome, 4–8 November, 1991.

  27. Idem, to be published.

  28. L. NÉEL, Ann. Phys. 2 (1967) 61.

    Article  Google Scholar 

  29. W. L. RUTH, J. Phys., Paris 25 (1964) 507.

    Article  Google Scholar 

  30. S. J. PICKARD and A. C. TURNOCK, Phys. Chem. Solids 10 (1959) 242.

    Article  Google Scholar 

  31. W. H. MEIKLEJOHN and C. P. BEAN, Phys. Rev. 102 (1956) 1413.

    Article  Google Scholar 

  32. Idem, ibid. 105 (1957) 904.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchand, A., Devaux, X., Barbara, B. et al. Microstructural and magnetic characterization of alumina-iron nanocomposites. Journal of Materials Science 28, 2217–2226 (1993). https://doi.org/10.1007/BF00367587

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367587

Keywords

Navigation