Skip to main content
Log in

Description and evaluation of reciprocating plate bioreactors

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The environment in which live microorganisms has a major impact on their productivity. One important factor is the mechanical mixing that is used to promote good heat and mass transfer in bioreactors. In this paper, the performance of reciprocating plate bioreactors is first evaluated for their ability to produce high oxygen transfer coefficients. Pure water and a glycerol water (50∶50 wt%) solution are used for this evaluation. Then, the performance of reciprocating plate bioreactors for the production of an exocellular polysaccharide (pullulan) by yeast Aureobasidium pullulans is analyzed in terms of quantity and quality of the polysaccharide. Results clearly show that a more efficient substrate utilisation is achieved with reciprocating plate bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A m:

amplitude

C :

constant in Eq. (1)

D m:

diameter

H L m:

height of liquid in the column

K L a 1/s:

overall oxygen mass transfer coefficient

P g/l:

pullulan concentration

P G W:

gassed power input

U G m/s:

superficial gas velocity

V L m3 :

liquid volume

α,β:

constant in Eq. (1)

g3:

gas holdup

\(\dot \gamma\) s−1 :

shear rate

η Pa s:

viscosity

φ :

fractional free area

References

  1. Doran, P. M.: Design of reactors for plant cells and organs. In: Advances in Biochemical Engineering Biotechnology (Ed.: A. Fiechter), Springer-Verlag 48 (1993) 113–168

  2. Schügerl, K.: Oxygen transfer into highly viscous media. In: Advances in Biochemical Engineering Biotechnology (Ed.: A. Fiechter), Springer-Verlag 19 (1981) 71–174

  3. Schügerl, K.: New bioreactors for aerobic processes. Int. Chem. Eng. 22, 4 (1982) 591–610

    Google Scholar 

  4. Nagata, S.: Mixing principles and applications. John Wiley & Sons, New York, 1975

    Google Scholar 

  5. Skelland, A. H. P.: Mixing and agitation of non-Newtonian fluids. In: Handbook of Fludis in Motion, Chap. 7 (Eds: N. P. Cheremisionoff and R. Gupta), Ann Arbor Science, New York (1993) 179–209

    Google Scholar 

  6. Ulbrecht, J. J.; Carreau, P.: Mixing of viscous non-Newtonian liquids. In: Mixing of Liquids by Mechanical Agitation (Eds.: J. J. Ulbrecht and G. R. Patterson), Gordon and Breach Science Pub., New York 1 (1985) 93–137

    Google Scholar 

  7. Tanguy, P. A.; Lacroix, R.; Bertrand, F.; Choplin, L.; Brito De la Fuente, E.: Finite element analysis of viscous mixing with helical ribbon-screw impeller. AlChE J. 38, 6 (1991) 939–944

    Google Scholar 

  8. Brauer, H.: Growth of fungi and bacteria in the reciprocating jet bioreactor. Bioprocess Engineering 6 (1991) 1–15

    Google Scholar 

  9. Prokop, A.; Rosenberg, M. Z.: Bioreactor for mammalian cell culture. In: Advances in Biochemical Engineering Biotechnology (Ed.: A. Fiechter), Springer-Verlag 39 (1989) 29–71

  10. Bailey, J. E.; Ollis, D. F.: Biochemical Engineering Fundamentals, 2nd Ed., McGraw-Hill Book Company, New York 1986

    Google Scholar 

  11. Merchuk, J. C.: Shear Effects on suspended cells. In Advances in Biochemical Engineering Biotechnology (Ed.: A. Fiechter), Springer-Verlag 44 (1991) 65–95

  12. Toma, M. K.; Ruklisha, M. P.; Vanags, J. J.; Zeltina, M. O.; Leite, M. P.; Galinina, N. I.; Viesturs, V. E.; Tengerdy, R. P.: Inhibition of microbial growth and metabolism by excess turbulence. Biotechnol. Bioeng. 38 (1991) 552–556

    Google Scholar 

  13. Nocentini, M.; Magelli, F.; Pasquali, G.; Fajner, D.: A fluid-dynamic study of a gas-liquid, non-standard vessel stirred by multiple impellers. The Chem. Eng. Journal 37 (1988) 53–56

    Google Scholar 

  14. Tecante, A. C.: Mass transfer in rheologically complex fluids in helical ribbon screw-agitated and aerated tank. Ph.D. Thesis, Univ. Laval, Quebec 1991

    Google Scholar 

  15. Moo-Young, M.; Blanch, H. W.: Design of biochemical reactors — Mass transfer criteria for simple and complex systems. In: Advances in Biochemical Engineering Biotechnology (Ed.: A. Fiechter), Springer-Verlag 19 (1981) 1–69

  16. Veljkovic, V.; Skala, D.: Mass transfer characteristics in a gas-liquid reciprocating plate column. II. Interfacial area. Can. J. Chem. Eng. 66 (1988) 200–210

    Google Scholar 

  17. Aiba, S.; Humphrey, A. E.; Millis, M.: Biochemical Engineering. New York, Academic Press 1973

    Google Scholar 

  18. Jarai, M.: Factors affecting the scale-up of aerated ferementation processes. Int. Chem. Eng. 19, 4 (1979) 710–707

    Google Scholar 

  19. Lounes, M.; Thibault, J.: Mass transfer in a reciprocating plate bioreactor. Chem. Eng. Comm. 127 (1994) 169–189

    Google Scholar 

  20. Godfrey, J. C.; Houlton, D. A.; Marley, S. T.; Marrocchelli, A.; Slater, M. J.: Continuous phase axial mixing in pulsed sieve plate liquid-liquid extraction columns. Chem. Eng. Res. Des. 66 (1988) 445–457

    Google Scholar 

  21. Lounes, M.; Thibault, J.: Hydrodynamics and power consumption of a reciprocating plate gas-liquid column. Can. J. Chem. Eng. 71 (1993) 497–506

    Google Scholar 

  22. Baird, M. H. I.; Rama Rao, N. V.: Characteristics of countercurrent reciprocating plate bubble column. II. Axial mixing and mass transfer. Can. J. Chem. Eng. 66 (1988) 222–231

    Google Scholar 

  23. Linek, V.; Vacek, V.; Benes, P.: A critical review and experimental verification of the correct use of the dynamic method for the determination of oxygen transfer in aerated agitated vessels to water, Chem. Eng. J. 34 (1987) 11–34

    Google Scholar 

  24. Nocentini, M.; Fajner, D.; Pasquali, G.; Magelli, F.; Gas-liquid mass transfer and holdup in vessels stirred with multiple Rushton turbines: Wter and water-glycerol solutions. Ind. Eng. Chem. Res. 32 (1993) 19–26

    Google Scholar 

  25. Perez, J. F.; Sandall, O. C.: Gas absorption by non-Newtonian fluids in agitated vessels. AlChE J. 20, 4 (1974) 770–775

    Google Scholar 

  26. LeDuy, A.; Marsan, A. A.; Coupal, B.: A study of the rheological properties of a non-Newtonian fermentation broth, Biotechnol. Bioeng. 16 (1974) 61–76

    Google Scholar 

  27. Rho, D.; Mulchandani, A.; Luong, J. H. T.; LeDuy, A.: Oxygen requirement in pullulan fermentation. Appl. Microbiol. Biotechnol. 28 (1988) 361–366

    Google Scholar 

  28. Lacroix, C.: Effet du pH sur la production en discontinu du pullulane par fermentation du sucrose. Master Thesis, Université Laval, Quebec, Canada 1985

    Google Scholar 

  29. McNeil, B.; Kristiansen, B.: Temperature effects on polysaccharide formation by Aureobasidium pullulans in stirred tanks. Enzyme Microb. Technol. 12 (1990) 521–526

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lounes, M., Audet, J., Thibault, J. et al. Description and evaluation of reciprocating plate bioreactors. Bioprocess Engineering 13, 1–11 (1995). https://doi.org/10.1007/BF00368758

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00368758

Keywords

Navigation