Skip to main content
Log in

Simultaneous inhibition and induction of compression wood formation by morphactin in artificially inclined stems of Japanese larch (Larix leptolepis Gordon)

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

Morphactin IT3456, applied in a 2–3 cm band around the middle portion of 2- or 3-year-old internodes of artificially inclined 5-year-old Japanese larches, induced compression wood formation on both the upper and the lower sides of the inclined stem above the treated region, while it inhibited compression wood formation below this region. These results seem to suggest that a high concentration ratio of endogenous auxin to sugar (auxin/sugar) in the differentiating xylem tissue is necessary and sufficient for compression wood formation, and that compression wood formation under natural conditions requires polar transport of auxin which supplies and maintains high concentration of auxin along the undeside of the stem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrol, B. K.; Audus, L. J. 1973: The effects of N-naphthylphthalamic acid and 2,4-dichlorophenoxyacetic acid. J. Exp. Bot. 24: 1224–1230

    Google Scholar 

  • Audus, L. J. 1962. The mechanism of the perception of gravity by plants. Symp. Soc. Exp. Biol. 16:197–210

    Google Scholar 

  • Audus, L. J. 1975: Geotropism in roots. In: Torrey, J.; Clarkson, L. (Eds.): The development and function of roots. London: Academic Press

    Google Scholar 

  • Balch, R. E. 1952: Studies of the balsam woolly aphid, Adelges piceae (Ratz.) and its effects on balsam fir, Abies balsamea (L.). Mill. Can Dept. Agric. Publ. 867

  • Balch, R. E.; Clark, J.; Bonga, J. M. 1964: Hormonal action in production of tumours and compression wood by an aphid. Nature 202: 721–722

    Google Scholar 

  • Doss, R. P.; Neumann, P. M.; Backhaus, R. A.; Sachs, R. M. 1977: Bark-banding of Pinus radiata with morphactin IT3456: Influence on trunk anatomy, assimilate transport and growth. Physiol. Plant 39: 280–284

    Google Scholar 

  • Gaither, D. H. 1975. Auxin and the response of pea roots to auxin transport inhibitors: morphactin. Plant Physiol. 55:1082–1086

    Google Scholar 

  • Goldsmith, M. H. M. 1968: The transport of auxin. Ann. Rev. Plant Physiol. 19: 347–360

    Google Scholar 

  • Griffiths, H. J.; Audus, L. J. 1964: Organelle distribution in the statocyte cells of the root tip of Vicia faba in relation to geotropic stimulation. New Phytologist. 63: 319–333

    Google Scholar 

  • Leopold, A. C. 1963: The polarity of auxin transport. Brookhaven Symp. Biol. 16: 218–234

    Google Scholar 

  • Little, C. H. A. 1981: Effect of cambial dormancy state on the transport of [I-14C] indol-3-yl acetic acid in abies balsamea shoots. Can. J. Bot. 59: 342–348

    Google Scholar 

  • Morris, D. A.; Thomas, A. G. 1978: A macro autoradiographic study of auxin transport in the stem of intact pea seedlings (Pisum sativum L.). J. Exp. Bot. 29: 147–157

    Google Scholar 

  • Münch, E. 1937: Versuche über Wege und Richtungen der Stoffbewegungen im Baum. Forstwiss. Cbl. 59: 305–324, 337–351

    Google Scholar 

  • Neumann, P. M.; Doss, R. P.; Sachs, R. M. 1977: A new laboratory method used for investigating the uptake, translocation and metabolism of bark-banded morphactin by trees. Physiol. Plant. 39: 248–251

    Google Scholar 

  • Nix, L. E.; Wodzicki, T. J. 1974: The radial distribution and metabolism of IAA-14C in Pinus echinata stems in relation to wood formation. Can. J. Bot. 52: 1349–1355

    Google Scholar 

  • Onaka, F. 1940: (On the influence of auxin on radial growth, particularly regarding compression wood formation in trees.) J. Jap. For. Soc. 22: 573–580

    Google Scholar 

  • Onaka, F. 1942: (Relation between the distribution of auxin and the radial growth of trees.) J. Jap. For. Soc. 24: 335–341

    Google Scholar 

  • Onaka, F. 1949: (Studies on compression wood and tension wood.) Mokuzai Kenkyu, (Wood Research, Bull. Wood Res. Inst., Kyoto Univ.) 1: 1–88

    Google Scholar 

  • Phelps, J. E.; Saniewski, M.; Smolinski, M.; Pieniazek, J.; Macginnes, E. A. Jr. 1974: A note on the structure of morphactin-induced wood in two coniferous species. Wood Fiber 6: 13–17

    Google Scholar 

  • Rubery, P. H.; Sheldrake, A. R. 1974: Carrier-mediated auxin transport. Planta 118: 101–121

    Google Scholar 

  • Schneider, G. 1970: Morphactins: Physiology and performance. Ann. Rev. Plant Physiol. 21: 499–536

    Google Scholar 

  • Shepherd, K. R.; Rowan, K. S. 1967: Indoleacetic acid in cambial tissue of radiata pine. Aust. J. Biol. Sci. 20: 637–646

    Google Scholar 

  • Smith, F. H. 1967: Effects of balsam woolly aphid (Adelges piceae) infestation on cambial activity in Abies grandis. Amer. J. Bot. 54: 1215–1223

    Google Scholar 

  • Smolinski, M.; Saniewski, M.; Pieniazek, J. 1972: The effect of Morphactin IT3456 on cambial activity and wood differentiation in Picea excelsa. Bull. Acad. Pol. Sci. 20: 431–435

    Google Scholar 

  • Thomson, K.-S.; Leopold, A. C. 1974: In vitro binding of morphactins and 1-N-Naphthylphthalamic acid in corn coleoptiles and their effects on auxin transport. Planta 115: 259–270

    Google Scholar 

  • Wareing, P. F.; Nasr, T. A. A. 1961: Gravimorphism in trees. I. Effects of gravity on growth and apical dominance in fruit trees. Ann. Bot. 25: 321–340

    Google Scholar 

  • Weij, H. G. van der 1932: Der Mechanismus der Wuchsstofftransportes. I. Res. Trav. Bot. Neerl. 29: 379–496

    Google Scholar 

  • Weij, H. G. van der 1934: Der Mechanismus der Wuchsstofftransportes. II. Rec. Trav. Bot. Neerl. 31: 810–857

    Google Scholar 

  • Wershing, H. F.; Bailey, I. W. 1942: Seedlings as experimental material in the study of “red wood” in conifers. J. For. 40: 411–414

    Google Scholar 

  • Wilson, B. F. 1968: Effect of girdling on cambial activity in white pine. Can. J. Bot. 46: 141–146

    Google Scholar 

  • Wolter, K. E. 1968: A new method for marking xylem growth. For. Sci. 14: 102–104

    Google Scholar 

  • Yamaguchi, K.; Itoh, T.; Shimaji, K. 1980: Compression wood induced by 1-N-Naphthylphthalamic acid (NPA), an IAA transport inhibitor. Wood Sci. Technol. 14: 181–185

    Google Scholar 

  • Ziegler, H. 1970: Morphactins. Endeavour 19: 112–116

    Google Scholar 

  • Zimmermann, M. H. 1971: Transport in the phloem. In: Zimmermann, M. H.; Brown, C. L. (eds.): Trees Structure and Function. 221–275. New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, K., Shimaji, K. & Itoh, T. Simultaneous inhibition and induction of compression wood formation by morphactin in artificially inclined stems of Japanese larch (Larix leptolepis Gordon). Wood Sci.Technol. 17, 81–89 (1983). https://doi.org/10.1007/BF00369125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369125

Keywords

Navigation