Skip to main content
Log in

On the orders of magnitude of epigenic dynamics and monoclonal antibody production

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The hybridoma cell's maximum capacity for monoclonal antibody (MAb) production is estimated to be 2300–8000 MAb molecules/cell/s, using measured rates of transcription and translation, and the limitations imposed by the size of the polymerase molecule and the ribosome. Nearly all the production rates reported in the literature fall into or below this range of production rates. Data from batch cultures of hybridomas demonstrate a constant specific rate of MAb production until the time integral of the viable cell concentration reaches about 108 cells · h/cm3. At this point, some essential nutrients from the standard media are depleted, causing MAb production to decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Potter, M.: Immunoglobulin producing tumors and myeloma proteins of mice. Physiol. Rev. 52 (3) (1972) 631–719

    Google Scholar 

  2. Choi, Y. S.: Biosynthesis and secretion of immunoglobulins. In: Litman, G. W.; Good, R. A. (Eds.): Comprehensive Immunology, Vol. 5, Immunoglobulins pp. 345–355. New York: Plenum Medical Book Co. 1978

    Google Scholar 

  3. Scharff, M. D.: The synthesis, assembly, and secretion of immunoglobulin: a biochemical and genetic approach. The Harvey Lectures 69 (1973) 125–142

    Google Scholar 

  4. Baumal, R.; Scharff, M. D.: Synthesis, assembly and secretion of globulin by mouse myeloma cells. V. Balanced and unbalanced synthesis of heavy and light chains by IgG-producing tumors and cell lines. J. Immunol., 111 (2) (1973) 448–456

    Google Scholar 

  5. Kafatos, F. C.: The cocoonase zymogen cells of silk moths: a model of terminal cell differentiation for specific protein synthesis. Current Topics in Developmental Biology 7 (1972) 125–191

    Google Scholar 

  6. Greenberg, H.; Penman, S.: Methylation and processing of ribosomal RNA in HeLa cells. J. Mol. Biol. 21 (1966) 527–535

    Google Scholar 

  7. Darnell, J. E.; Girard, M.; Baltimore, D.; Summers, D. F.; Maizel, J. V.: The synthesis and translation of poliovirus RNA. In: Colter, J. S.; Paranchych, W. (Eds.): The Molecular Biology of Viruses, pp. 375–401. New York: Academic Press 1967

    Google Scholar 

  8. Rose, J.; Mosteller, R.; Yanofsky, C.: Tryptophan messenger ribonucleic acid elongation rates and steady-state levels of tryptophan operon enzymes under various growth conditions. J Mol. Biol. 51 (1970) 541–550

    Google Scholar 

  9. Miller, O.; Hamkalo, B.; Thomas, C., Jr.: Visualization of bacterial genes in action. Science 169 (1970) 392–395

    Google Scholar 

  10. Miller, O.; Beatty, B.; Hamkalo, B.; Thomas, C.: Electron microscopic visualization of transcription. Cold Spring Harbor Symposia on Quantitative Biology 35 (1970) 505–512

    Google Scholar 

  11. Gilmore-Herbert, M.; Wall, R.: Nuclear RNA precursors in the processing pathway to MOPC 21 κ light chain messenger RNA. J. Mol. Biol. 135 (1979) 879–891

    Google Scholar 

  12. Kuehl, W.: Synthesis of immunoglobulin in myeloma cells. Cur. Top. Microbiol. Immunol. (1977) 1–46

  13. Schibler, U.; Marcu, K. B.; Perry, R. P.: The synthesis and processing of the messenger RNAs specifying heavy and light chain immunoglobulins in MPC-1 cells. Cell 15 (1978) 1495–1509

    Google Scholar 

  14. Wall, R.; Kuehl, M.: Biosynthesis and regulation of immunoglobulins. Ann. Rev. Immunol. 1 (1983) 393–422

    Google Scholar 

  15. Hunt, T; Hunter, T.; Munro, A.: Control of haemoglobin synthesis: rate of translation of the messenger RNA for the α and β chains. J. Mol. Biol. 43 (1969) 123–133

    Google Scholar 

  16. Engbaek, F.; Kjeldgaard, N.; Maaloee, O.: Chain growth rate of beta-galactosidase during exponential growth and amino acid starvation. J. Mol. Biol. 75 (1) (1973) 109–118

    Google Scholar 

  17. Christensen, A.; Kahn, L.; Bourne, C.: Circular polysomes predominate on the rough endoplasmic reticulum of somatotropes and mammotropes in the rat anterior pituitary. Amer. J. Anat. 178 (1987) 1–10

    Google Scholar 

  18. Luan, Y; Mutharasan, R.; Magee, W.: Strategies to extend longevity of hybridomas in culture and promote yield of monoclonal antibodies. Biotechnol. Lett. 9 (10) (1987) 691–696

    Google Scholar 

  19. Ozturk, S.; Lee, G. M.; Huard, T. K.; Palsson, B. O.: Effect of serum concentration on hybridoma cell growth and monoclonal antibody production at various initial cell densities. Hybridoma 8 (1989) 369–375

    Google Scholar 

  20. Renard, J.; Spagnoli, R.; Mazier, C.; Salles, M.; Mandine, E.: Evidence that monoclonal antibody production kinetics is related to the integral of the viable cells curve in batch systems. Biotechnol. Lett. 10 (2) (1988) 91–96

    Google Scholar 

  21. Luan, Y; Mutharasan, R.; Magee, W.: Effect of various glucose/glutamine ratios on hybridoma growth, viability and monoclonal antibody formation. Biotechnol. Lett. 9 (8) (1987) 535–538

    Google Scholar 

  22. Lebherz, W. B.: Batch production of monoclonal antibody by large-scale suspension culture. BioPharm, Febr. (1988) 22–32

  23. Seaver, S. S.; Rudolph, J. L.; Gabriels, J. E.: A rapid HPLC technique for monitoring amino acid utilization in cell culture. BioTechniques Sept./Oct. (1984) 254–260

  24. Lee, G.; Huard, T.; Palsson, B. O.: The effect of mechanical agitation on hybridoma cell growth. Biotechnol. Lett 10 (1988) 625–628

    Google Scholar 

  25. Miller, W.; Blanch, H.; Wilke, C.: A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate and pH. Biotechnol. Bioeng. 32 (1988) 947–965

    Google Scholar 

  26. Hu, W.; Dodge, T.; Frame, K.; Himes, V.: Effect of glucose on the cultivation of mammalian cells. Dev. Biol. Stand. 66 (1987) 279–290

    Google Scholar 

  27. Reuveny, S.; Velez, D.; Macmillan, J.; Miller, L.: Factors affecting cell growth and monoclonal antibody production in stirred reactors. J. Immunol. Methods 86 (1986) 53–59

    Google Scholar 

  28. Reuveny, S.; Velez, D.; Miller, L.; Macmillan, J.: Comparison of cell propagation methods for their effect on monoclonal antibody yield in fermentors. J. Immunol. Methods 86 (1986) 61–69

    Google Scholar 

  29. Altshuler, G.; Dziewulski, D.; Sowek, J.; Belfort, G.: Continuous hybridoma growth and monoclonal antibody production in hollow fiber reactors-separators. Biotechnol. Bioeng. 28 (1986) 646–658

    Google Scholar 

  30. Tharakan, J. P.; Chau, P. C.: IgG production kinetics in serum-free media. Biotechnol. Lett. 8 (8) (1986) 529–534

    Google Scholar 

  31. Merton, O.; Reiter, S.; Himmler, G.; Scheirer, W.; Katinger, H.: Production kinetics of monoclonal antibodies. Dev. Biol. Stand. 60 (1985) 219–227

    Google Scholar 

  32. Dalili, M.; Ollis, D. F.: Transient kinetics of hybridoma growth and monoclonal antibody production in serum-limited cultures. In: Proceedings of the American Chemical Society Meeting, 1987

  33. de St. Groth, S. F: Automated production of monoclonal antibodies in a cytostat. J. Immunol. Methods 57 (1983) 121–136

    Google Scholar 

  34. Murakami, H.; Shimomura, T.; Ohashi, H.; Hashizume, S.; Tokashiki, M.; Shinohara, K.; Yasumoto, K.; Nomoto, K.; Omura, H.; Serum-free stirred culture of human-human hybridoma lines. In: Murakami, H.; Yomane, I.; Barnes, D. W.; Mather, J. P.; Hagashi, I., Sato G. H. (Eds.): Growth and Differentiation of Cells in Defined Environment, pp 111–116. Berlin, Heidelberg, New York, Tokyo: Springer 1985

    Google Scholar 

  35. Miller, W.; Wilke, C.; Blanch, H.: Kinetic analysis of hybridoma growth in continuous suspension culture. In: Proceedings of the American Chemical Society Meeting, New Orleans, 1986

  36. Birch, J.; Thompson, P.; Lambert, K.; Boraston, R.: The large scale cultivation of hybridoma cells producing monoclonal antibodies. In: Feder, J.; Tolbert, W. (Eds.): Large-Scale Mammalian Cell Culture, pp. 1–18. St. Louis: Academic Press 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savinell, J.M., Lee, G.M. & Palsson, B.O. On the orders of magnitude of epigenic dynamics and monoclonal antibody production. Bioprocess Eng. 4, 231–234 (1989). https://doi.org/10.1007/BF00369177

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369177

Keywords

Navigation