Skip to main content
Log in

Critical analysis of factors influencing sphaeroplast generation from Saccharomyces cerevisiae

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Efficient synthesis of large numbers of viable sphaeroplast from Saccharomyces cerevisiae has been found to be influenced by a number of factors. In this case, Trichoderma harzianum, NCIM 1185, culture filtrate has been used to prepare sphaeroplast from Saccharomyces cerevisiae, NCIM 3288. A method has been devised to isolate large number of viable sphaeroplast from the cell. Detailed analysis of various factors affecting the formation of sphaeroplasts from Saccharomyces cerevisiae has not yet been reported. This study showed critical analysis of various factors which influenced sphaeroplast formation. Most suitable conditions were: Age of the organism in slant — 1 d, cell age in liquid medium — 24 h, time of incubation of cell with 0.3% β-mercaptoethanol — 30 min, level of lytic ezyme concentration — 79.2 ml, concentration of cell (dry wt. equivalent) — 0.1262 g, time of contact with lytic enzyme — 25 min, temperature of sphaeroplast formation — 30 °C, phosphate buffer — 25 mM of pH 6.5 and KCl as osmotic stabilizer — 0.7 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anjani Kumari, O.; Panda, T.: Protoplast fusion — an integrated approach. In: Proceedings of CHEMCON '89 (42 Annual Session of Indian Institute of Chemical Engineers) Trivandrum, Vol. II, 717–721, 1989

    Google Scholar 

  2. Morgan, A. J.: Yeast strain improvement by protoplast fusion and transformation. Experientia Supplementum 46 (1983) 155–166

    Google Scholar 

  3. Johansson, M.; Sjostrom, J. E.: Ethanol and glycerol production under aerobic conditions by wild type, respiratory-deficient mutants and a fusion product of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 20 (1984) 105–110

    Google Scholar 

  4. Lee, H. S.; Jang, H. W.; Ryn, Y. W.: Development of ethanol tolerant yeast strain for alcohol fermentation from lactose by protoplast fusion. Proceedings of AP Bio Ch. EC '90, M-P 32, 349–352, 1990

    Google Scholar 

  5. Eddy, A. A.; Williamson, D. H. Formation of aberrant cell walls and of spores by the growing yeast protoplast. Nature 183 (1959) 1101–1104

    Google Scholar 

  6. Peberdy, J. F.: Protoplast fusion — a tool for genetic manipulation and breeding in industrial microorganisms. Enzyme Microbial Technology 2 (1980) 23–29

    Google Scholar 

  7. Villianueva, J. R.; Garcia-Acha, I.: Production and use of fungal protoplasts. Methods in Microbiology 4 (1971) 665–718

    Google Scholar 

  8. Kavanagh, K.; Whittaker, P. A.: Formation of sphaeroplasts and protoplasts in the xylose-fermenting yeast Pachysolen tannophilus. Biotechnology and Applied Biochemistry 12 (1990) 57–62

    Google Scholar 

  9. Svoboda, A.: Fusion of yeast protoplasts induced by polyethylene glycol. Journal of General Microbiology 109 (1978) 169–175

    Google Scholar 

  10. Sharma, R. K.; Johri, B. N.: Protoplast liberation from Saccharomyces cerevisiae using thermomycolase of Malbranchea pulchella var. sulfurea. Current Science 54 (1985) 750–752

    Google Scholar 

  11. Hoskins, J. M.; Meynell, G. G.; Sanders, F. K.: A comparison of methods for estimating viable counts of a suspension of tumor cells. Experimental Cell Research 11 (1956) 297–304

    Google Scholar 

  12. Kolar, H.; Mischak, H.; Kammel, W. P.; Kubicek, C. P.: Carboxymethyl-cellulase and β-glucosidase secretion by protoplasts of Trichoderma reesei. Journal of General Microbiology 131 (1985) 1339–1347

    Google Scholar 

  13. Miller, G. L.: Use of dinitrosalicylic reagent for determining reducing sugar. Analytical Chemistry 31 (1959) 426–429

    Google Scholar 

  14. Mandels, M., Andreotti, R.; Roche, C.: Measurement of saccharifying cellulase. Biotechnology and Bioengineering Symposium 5 (1976) 81–105

    Google Scholar 

  15. Panda, T.; Bisaria, V. S.; Ghose, T. K.: Studies on mixed fungal culture for cellulase and hemicellulase production: Part I. Optimization of medium for the mixed culture of T. reesei D1-6 and A. wentii Pt. 2804. Biotechnology Letters 5 (1983) 767–772

    Google Scholar 

  16. Kubicek, C. P.: β-glucosidase excretion by Trichoderma pseudokoningii correlation with cell wall bound β-1,3 glucanase activities, Archives of Microbiology 132 (1982) 344–354

    Google Scholar 

  17. Jeuniax, C.: Chitinases. Methods in Enzymology (Eds.): Neufield, E. F.; Gisberg, V. Vol. 8, pp. 644–651, New York: Academic Press, 1966

    Google Scholar 

  18. Panda, T.: Studies on biosynthesis of cellulase and xylanase by the mixed culture of Trichoderma reesei D1-6 and Aspergillus wentii Pt 2804. Ph.D. Thesis, pp. 53 and 82-83, Indian Institute of Technology, Delhi. India, 1986

    Google Scholar 

  19. Kubicek, C. P.: Release of Carboxymethylcellulase and β-glucosidase from cell walls of Trichoderma reesei. European Journal of Applied Microbiology and Biotechnology 13 (1981) 226–231

    Google Scholar 

  20. Bradford, M. M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72 (1976) 248–254

    Google Scholar 

  21. Farkas, V.: In: Training course of fungal protoplast fusion and its applications (Eds.): Ferenczy, L.; Kevei, F. pp. 43–59. Attila Jozsef University, Szeged, Hungary (1981).

    Google Scholar 

  22. Kuo, S. C.; Yamamoto, S.: Preparation and growth of yeast protoplasts. Methods in Cell Biology 11 (1975) 169–183

    Google Scholar 

  23. Kobori, H.; Yamada, N.; Taki, A.; Osumi, M.: Actin is associated with the formation of the cell wall in reverting protoplasts of the fission yeast Schizosaccharomyces pombe. Journal of Cell Science 94 (1989) 635–646

    Google Scholar 

  24. Theuvenet, A. P. R.; Bindels, R. J. M.: An investigation into the feasibility of using yeast protoplasts to study the ion transport properties of the plasmamembrane. Biochimica et Biophysica Acta 599 (1980) 587–595

    Google Scholar 

  25. Brigidi, P.; Matteuzzi, D.; Fava, R.: Use of protoplast fusion to introduce methionine over production into Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 28 (1988) 268–271

    Google Scholar 

  26. Baguley, B. C.; Ronimele, G.; Gruner, J.; Wehrli, W.: Papulacandin, B.: An inhibitor of glucan synthesis in yeast sphaeroplasts. European Journal of Biochemistry 97 (1979) 345–351

    Google Scholar 

  27. Moran, J. W.; Witten, L. D.: Stability of the plasma membrane in Saccharomyces rouxii and its relationship to glucose tolerance. Applied and Environmental Microbiology 39 (1980) 928–931

    Google Scholar 

  28. Van Rijn, H. J. M.; Boer, P.; Steyn-Parvi, E. P.: Biosynthesis of acid phosphatase of Baker's yeast: Factors influencing its production by protoplasts and characterization of the secreted enzyme. Biochimica et Biophysica Acta 268 (1972) 431–441

    Google Scholar 

  29. Baird, J. K.; Cunningham, W. L.: Formation of yeast protoplasts by using an enzyme preparation from cytophaga. Proceedings of the Biochemical Society (Nature) 183 (1959) 32–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, J.A., Panda, T. Critical analysis of factors influencing sphaeroplast generation from Saccharomyces cerevisiae. Bioprocess Engineering 7, 349–355 (1992). https://doi.org/10.1007/BF00369490

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369490

Keywords

Navigation