Skip to main content
Log in

Viscous media in tower bioreactors: Hydrodynamic characteristics and mass transfer properties

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Studies in tower reactors with viscous liquids on flow regime, effective shear rate, liquid mixing, gas holdup and gas/ liquid mass transfer (k La) are reviewed. Additional new data are reported for solutions of glycerol, CMC, PAA, and xanthan in bubble columns with diameters of 0.06, 0.14 and 0.30 m diameter. The wide variation of the flow behaviour index (1 to 0.18) allows to evaluate the effective shear rate due to the gas flow. New dimensionless correlations are developed based on the own and literature data, applied to predict k La in fermentation broths, and compared to other reactor types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a(a′) m−1 :

specific interfacial area referred to reactor (liquid) volume

Bo:

Bond number (g D 2c ϱ L/σ)

c L(c *L ) kmol m−3 :

(equilibrium) liquid phase oxygen concentration

C :

coefficient characterising the velocity profile in liquid slugs

C s m−1 :

coefficient in Eq. (2)

d B(dvs) m:

bubble diameter (Sauter mean of d B)

d 0 m:

diameter of the openings in the gas distributor plate

D c m:

column diameter

D L m2s−1 :

diffusivity

E L(EW) m2 s−1 :

dispersion coefficient (in water)

E 2 :

square relative error

Fr:

Froude number (u G/(g Dc)0.5)

g m s−2 :

gravity acceleration

Ga:

Gallilei number (g D 3c ϱ 2L 2eff )

h m:

height above the gas distributor the gas holdup is characteristic for

k Pasn :

fluid consistency index (Eq. 1)

k L m s−1 :

liquid side mass transfer coefficient

k La(kLa′) s−1 :

volumetric mass transfer coefficient referred to reactor (liquid) volume

L m:

dispersion height

n :

flow behaviour index (Eq. 1)

P W:

power input

Re:

liquid slug Reynolds number (ϱ L(u G +u L) D ceff)

Sc:

Schmidt number (μ eff/(ϱ L D L ))

Sh:

Sherwood number (k La D 2c /DL)

t s:

time

u B(usw) m s−1 :

bubble (swarm) rise velocity

u G(uL) m s−1 :

superficial gas (liquid) velocity

V(VL) m3 :

reactor (liquid) volume

α W m−2 K−1 :

heat transfer coefficient

y(y eff) s−1 :

(effective) shear rate

ɛ G :

relative gas holdup

λ s:

relaxation time of viscoelastic liquid

μ Leff) Pa s:

(effective) liquid viscosity (Eq. 1)

ϱ L kg m−3 :

liquid density

σ N/m:

surface tension

References

  1. Charles, M.: Technical aspects of the rheological properties of microbiol cultures. Adv. Biochem. Eng. 8 (1978) 1–62

    Google Scholar 

  2. Reuß, M.: Biochemical engineering: Physical properties of biotechnical process materials. Fortschr. Verfahrenstech. 20 (1982) 519–536

    Google Scholar 

  3. König, B.: Untersuchungen zur Penicillinproduktion in Blasensäulen. Thesis, Univ. Hannover, 1980

  4. Gbewonyo, K.; Wang, D. I. C.: Enhancing gas-liquid mass transfer rates by confining mycelial growth to microbeads in a bubble column. Biotechnol. Bioeng. 25 (1983) 2873–2887

    Google Scholar 

  5. Guiseppin, M. L. F.: Effects of dissolved oxygen concentration on lipase production by Rhizopus delemar. Appl. Biotechnol. Microbiol. 20 (1984) 161–165

    Google Scholar 

  6. Schügerl, K: Oxygen transfer into highly viscous media. Adv. Biochem. Eng. 19 (1981) 71–174

    Google Scholar 

  7. Nishikawa, M.; Kato, H.; Hashimoto, K.: Heat transfer in aerated tower filled with non-Newtonian liquid. Ind.-Eng. Chem. Proc. Des. Dev. 16 (1977) 133–137

    Google Scholar 

  8. Henzler, H.-J.: Begasen höherviskoser Flüssigkeiten. Chem.-Ing.-Tech. 52 (1980) 643–652

    Google Scholar 

  9. Stein, W. A.: Berechnung des charakteristischen Schergefälles für begaste nicht-Newtonsche Flüssigkeiten. Chem. Ing.-Tech. 56 (1984) 422–423

    Google Scholar 

  10. Henzler, H.-J.; Kauling, J.: Scale-up of mass transfer in highly viscous liquids. In: 5th European Conference on Mixing, Würzburg/Germany, paper 30, pp. 303–312, Cranfield: BHRA 1985

    Google Scholar 

  11. El-Temtamy, S. A.; Khalil, S. A.; Nour El-Din, A. A.; Gaber, A.: Oxygen mass transfer in a bubble column bioreactor containing lysed yeast suspensions. Appl. Microbiol. Biotechnol. 19 (1984) 376–381

    Google Scholar 

  12. Schumpe, A.; Deckwer, W.-D.: Gas holdups, specific interfacial areas, and mass transfer coefficients of aerated carboxymethyl cellulose solutions in a bubble column. Ind. Eng. Chem. Proc. Des. Dev. 21 (1982) 706–711

    Google Scholar 

  13. Schumpe, A.; Patwari, A. N.: Hochviskose Medien in Blasensäulen: Hydrodynamik und Stoffaustausch. Chem.-Ing.-Tech. 51 (1985) 874–875

    Google Scholar 

  14. Haque, M. W.; Joshi, J. B.; Nigam, K. D. P.: Hydrodynamics and mixing in highly viscous pseudoplastic non-Newtonian solutions in large diameter bubble columns. Chem. Eng. Sci. (in print)

  15. Godbole, S. P.; Honath, M. F.; Shah, Y. T.: Holdup structure in highly viscous non-Newtonian liquids in bubble columns. Chem. Eng. Commun. 16 (1982) 119–134

    Google Scholar 

  16. Godbole, S. P.; Schumpe, A.; Shah, Y. T.; Carr, N. L.: Hydrodynamics and mass transfer in non-Newtonian solutions in a bubble column. AIChE J. 30 (1984) 213–220

    Google Scholar 

  17. Deckwer, W.-D.; Nguyen-tien, K.; Schumpe, A.; Serpemen, Y.: Oxygen mass transfer into aerated CMC-solutions in a bubble column. Biotechnol. Bioeng. 24 (1982) 461–481

    Google Scholar 

  18. Schumpe, A.: Zur Ermittlung von Stoffübergangszahlen auf der Basis von Gelöstsauerstoff-Messungen. Chem.-Ing.-Tech. 57 (1985) 501–506

    Google Scholar 

  19. El-Temtamy, S. A.; Khalil, S. A.; Nour El-Din, A. A.; Gaber, A.: Liquid-phase axial mixing in a bubble column bioreactor containing yeast suspension. Appl. Microbiol. Biotechnol. 21 (1985) 65–68

    Google Scholar 

  20. Hikita, H.; Kikukawa, H.: Liquid-phase mixing in bubble columns: Effect of liquid properties. Chem. Eng. J. 8 (1974) 191–197

    Google Scholar 

  21. Cova, D. R.: Axial mixing in the liquid phase in gas-sparged columns. Ind. Eng. Chem. Proc. Des. Dev. 13 (1974) 292–296

    Google Scholar 

  22. Aoyama, Y.; Ogushi, K.; Koide, K.; Kubota, H.: Liquid mixing in concurrent bubble columns. J. Chem. Eng. Japan 1 (1968) 158–163

    Google Scholar 

  23. Alexander, B. F.; Shah, Y. T.: Axial dispersion coefficients in bubble columns. Chem. Eng. J. 11 (1976) 153–156

    Google Scholar 

  24. Pilhofer, T.; Bach, H. F.; Mangartz, K. H.: Determination of fluid dynamic parameters in bubble column design. ACS Sympos. Ser. 65 (1978) 372–383

    Google Scholar 

  25. Kelkar, B.G.; Shah, Y. T.: Gas holdup and backmixing in bubble column with polymer solutions. AIChE J. 31 (1985) 700–702

    Google Scholar 

  26. Devine, W. D.; Shah, Y. T.; Morsi, B. L.: Liquid phase axial mixing in a bubble column with viscous non-Newtonian liquids. Canad. J. Chem. Eng. 63 (1985) 195–201

    Google Scholar 

  27. El-Temtamy, S.; Farahat, L.; Nour El-Din, A.; Gaber, A.: Non-Newtonian behaviour of yeast suspensions. Europ. J. Appl. Microbiol. Biotechnol. 15 (1982) 156–160

    Google Scholar 

  28. Ellis, J. E.; Jones, E. L.: Paper presented at the Two Phase Flow Symposium, Exeter/England, June 1965 (quoted in [29])

    Google Scholar 

  29. Hughmark, G. A.: Holdup and mass transfer in bubble columns. Ind. Eng. Chem. Proc. Des. Dev. 6 (1967) 218–220

    Google Scholar 

  30. Akita, K.; Yoshida, F.: Gas holdup and volumetric mass transfer coefficient in bubble columns. Ind. Eng. Chem. Proc. Des. Dev. 12 (1973) 76–80

    Google Scholar 

  31. Eissa, S. H.; Schügerl, K.: Holdup and backmixing investigations in cocurrent and countercurrent bubble columns. Chem. Eng. Sci. 30 (1975) 1251–1256

    Google Scholar 

  32. Bach, H. F.; Pilhofer, T.: Variation of gas hold-up in bubble columns with physical properties of liquids and operating parameters of columns. Ger. Chem. Eng. 1 (1978) 270–275

    Google Scholar 

  33. Buchholz, H.; Buchholz, R.; Lücke, J.; Schügerl, K.: Bubble swarm behaviour and gas absorption in non-Newtonian fluids in sparged columns. Chem. Eng. Sci. 33 (1978) 1061–1070

    Google Scholar 

  34. Buchholz, H.; Buchholz, R.; Niebelschütz, H.; Schügerl, K.: Absorption of oxygen in highly viscous Newtonian and nonNewtonian fermentation model media in bubble column bioreactors. Europ. J. Appl. Microbiol. Biotechnol. 6 (1978) 115–126

    Google Scholar 

  35. Nakanoh, M.; Yoshida, F.: Gas absorption by Newtonian and non-Newtonian liquids in a bubble column. Ind. Eng. Chem. Proc. Des. Dev. 19 (1980) 190–195

    Google Scholar 

  36. Deckwer, W.-D.: Reaktionstechnik in Blasensäulen. Frankfurt: Salle u. Sauerländer 1985

    Google Scholar 

  37. Yoshida, F.; Akita, K.: Performance of gas bubble columns. AIChE J. 11 (1965) 9–13

    Google Scholar 

  38. Schumpe, A.; Singh, Ch.; Deckwer, W.-D.: Stoffübergangszahlen und effektives Schergefälle beim Belüften von Xanthan-Lösungen in Blasensäulen. Chem.-Ing.-Tech. 57 (1985) 988–989

    Google Scholar 

  39. Calderbank, P. H.; Moo-Young, M. B.: The continuous phase heat and mass transfer properties of dispersions. Chem. Eng. Sci. 16 (1961) 39–54

    Google Scholar 

  40. Bhavaraju, S. M.; Mashelkar, R. A.; Blanch, H. W.: Bubble motion and mass transfer in non-Newtonian fluids. AIChE J. 24 (1978) 1063–1076

    Google Scholar 

  41. Schumpe, A.: Die chemische Bestimmung von Phasengrenz- flächen in Blasensäulen bei uneinheitlichen Blasengrößen. Thesis, Universität Hannover 1981

  42. Sandford, P. A.; Baird, J.: Industrial utilization of polysaccharides. In: Aspinall, G. O. (Ed.): The polysaccharides, vol. 2, pp. 411–490. Orlando: Academic Press 1983

    Google Scholar 

  43. Akita, K.: Private communication

  44. Heijnen, J. J.; Van't Riet, K.; Wolthuis, A. J.: Influence of very small bubbles on the dynamic k L A measurement in viscous gas-liquid systems. Biotechnol. Bioeng. 22 (1980) 1945–1956

    Google Scholar 

  45. Franz, K.; Buchholz, R.; Schügerl, K.: Comprehensive study of the gas hold up and bubble size distribution in highly viscous liquids. Chem. Eng. Commun. 5 (1980) 165–202

    Google Scholar 

  46. Dumitrescu, D. T.: Z. angew. Math. Mech. 23 (1943) 139 (quoted in [47])

    Google Scholar 

  47. Nicklin, D. J.; Wilkes, J. O.; Davidson, J. F.: Two-phase flow in vertical tubes. Trans. Inst. Chem. Eng. 40 (1962) 61–68

    Google Scholar 

  48. Bhaga, D.; Weber, M. E.: In-line interaction of a pair of bubbles in a viscous liquid. Chem. Eng. Sci. 35 (1980) 2467–2474

    Google Scholar 

  49. Dukler, A. E.; Maron, D. M.; Brauner, N.: A physical model for predicting the minimum stable slug length. Chem. Eng. Sci. 40 (1985) 1379–1385

    Google Scholar 

  50. Quicker, G.; Schumpe, A.; König, B.; Deckwer, W.-D.: Comparison of measured and calculated oxygen solubilities in fermentation media. Biotech. Bioeng. 23 (1981) 635–650

    Google Scholar 

  51. Schumpe, A.; Quicker, G.; Deckwer, W.-D.: Gas solubilities in microbiol culture media. Adv. Biochem. Eng. 24 (1982) 1–38

    Google Scholar 

  52. Himmelsbach, W.: Untersuchungen zum Stoff- und Wärmeübergang sowie zur Homogenisierung in gerührten Fermentern am Beispiel von Xanthan. Chem.-Ing.-Tech. 57 (1985) 548–549

    Google Scholar 

  53. Nigam, K. D. P.; Schumpe, A.: Aeration of viscous Newtonian and pseudoplastic liquids in a three-phase fluidized bed reactor. AIChE J. (submitted)

  54. Dussap, C. G.; Decorps, J.; Gros, J. B.: Transfert d'oxygene en presence de polysaccharides exocellulaires dans un fermenteur agité aéré et dans un fermenter de type gazosiphon. Entropie 123 (1985) 11–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumpe, A., Deckwer, W.D. Viscous media in tower bioreactors: Hydrodynamic characteristics and mass transfer properties. Bioprocess Engineering 2, 79–94 (1987). https://doi.org/10.1007/BF00369528

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369528

Keywords

Navigation