Skip to main content
Log in

An erupted migmatite from Cerro del Hoyazo, SE Spain

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The almandine-bearing biotite-cordierite-labradorite dacite of the Cerro del Hoyazo is part of the Neogene volcanic range in SE Spain, extending roughly from Cabo de Gata to Cartagena.

About 1 vol. % of the lava consists of rock inclusions, measuring over 1 cm, made up of almandine-biotite-sillimanite gneiss, quartz-cordierite gneiss and spinel-cordierite rock. On the ground of their abundance, chemical composition, mineral content and structure, the first and the second type are interpreted as restite inclusions and the third type as recrystallized restite. These restites and the dacitic magma were derived syngenetically from a (semi-) pelitic rock sequence by means of anatexis: the (semi-)pelitic rocks separated into a granitoid melt and Al-rich restites. Euhedral almandine crystals found in the glass base of the dacite have a pre-magmatic origin, and may be compared directly to those in the restites.

Another type of inclusion is represented by basic igneous rocks of varying grain size, comprising mainly basaltoid rocks and quartz-rich gabbros. These inclusions commonly bear some restite fragments of the kind mentioned above, and therefore are interpreted as representing basic magma of deeper origin that has absorbed some anatectic material. In part, the composite basic melt thus formed crystallized under plutonic conditions and fragments of the resulting quartz-rich gabbro were incorporated in a later stage in the dacitic melt. Another portion of the composite basic magma was incorporated in the dacitic melt (probably shortly before the eruption of the dacitic magma) as magma blebs (Ø ≅1–20 cm) which subsequently crystallized in part, some of them showing a comparatively fine-grained border zone.

Two possible hypotheses are suggested for the time relation between the anatexis of the (semi-) pelitic complex and the appearance of the basic magma: (a) the anatexis was of a regional nature, and was in progress when the basic magma entered the stage (and assumedly triggered the eruption of the granitoid magma); (b) the regional anatexis took place considerably earlier and the basic magma intruded an essentially solid migmatite complex, which was then melted down (contact anatexis) and subsequently erupted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bordet, P.: Courbes pour la détermination des feldspaths plagioclases haute température et basse température, dans la zone perpendicular à g' (010). Bull. Soc. Franç. Minéral. Crist. 86, 206–207 (1963).

    Google Scholar 

  • Brown, G. M.: Melting relations of Tertiary granitic rocks in Skye and Rhum. Mineral. Mag. 33, 533–562 (1963).

    Google Scholar 

  • Burri, C., Parga-Pondal, I.: Neue Beiträge zur Kenntnis des granat-führenden Cordieritandesites vom Hoyazo bei Nijar (Provinz Almería, Spanien). Schweiz. Mineral. Petrog. Mitt. 16, 226–262 (1936).

    Google Scholar 

  • Dietrich, R. V., Mehnert, K. R.: Proposal for the nomenclature of migmatites and associated rocks. Report Int. Geol. Congr., 1960, Part 26, 56–67 (1961).

  • Glanchaud, L., Letolle, R.: La théorie des deux magmas fondamentaux dans le volcanisme intracontinental et l'évolution géochimique des lavas du Mont-Dore (France). Geol. Rundschau 55, 316–329 (1965).

    Article  Google Scholar 

  • Green, T. H., Ringwood, A. E.: Origin of the calc-alkaline igneous rock suite. Earth Plan. Sci. Lett. 1, 307–316 (1966).

    Article  Google Scholar 

  • —: Genesis of the calc-alkaline rocks. Contr. Mineral. and Petrol. 18, 105–162 (1968a).

    Article  Google Scholar 

  • —: Origin of garnet phenocrysts in calc-alkaline rocks. Contr. Mineral. and Petrol. 18, 163–174 (1968b).

    Article  Google Scholar 

  • Gribble, C. D.: The cordierite-bearing rocks of the Haddo House and Arnage Districts, Aberdeenshire. Contr. Mineral. and Petrol. 17, 315–330 (1968).

    Article  Google Scholar 

  • —, O'Hara, M. J.: Interaction of basic magma with pelitic materials. Nature 214, 1198–1201 (1967).

    Article  Google Scholar 

  • Hawkes, D. D.: Order of abundant crystal nucleation in a natural magma. Geol. Mag. 104, 473–486 (1967).

    Google Scholar 

  • Holmes, A.: The origin of igneous rocks. Geol. Mag. 69, 543–558 (1932).

    Google Scholar 

  • Kuno, H.: Differentiation of basalt magmas. In: Basalts (The Poldervaart treatise on rocks of basaltic composition, New York etc.: Interscience), vol. 2, p. 623–688 (1968).

    Google Scholar 

  • Marinelli, G.: Genèse des magmas du volcanisme plioquaternaire des Apennins. Geol. Rundschau 57, 127–141 (1967).

    Article  Google Scholar 

  • Mehnert, K. R.: Der gegenwärtige Stand des Granitproblems. Fortschr. Mineral. 37, 117–206 (1959).

    Google Scholar 

  • —: Petrographie und Abfolge der Granitisation im Schwarzwald, III. Neues Jahrb. Mineral., Abhandl. 98, 208–249 (1962).

    Google Scholar 

  • —: Petrographie und Abfolge der Granitisation im Schwarzwald, IV. Neues Jahrb. Mineral., Abhandl. 99, 161–199 (1963).

    Google Scholar 

  • Osann, A.: 5. Über den Cordierit führenden Andesit vom Hoyazo (Cabo de Gata). Z. Deut. Geol. Ges. 40, 694–708 (1888).

    Google Scholar 

  • Piwinskii, A. J., Wyllie, P. J.: Experimental studies of igneous rock series: a zoned pluton in the Wallowa Batholith, Oregon, J. Geol. 76, 205–234 (1968).

    Article  Google Scholar 

  • Plas, L., van der, Tobi, A. C.: A chart for judging the reliability of point counting results. Am. J. Sci. 263, 87–90 (1965).

    Article  Google Scholar 

  • Poldervaart, E.: Chemistry of the earth's crust, in: Crust of the Earth (symposium). Geol. Soc. Am., Spec. Papers 66, 119–144 (1955).

    Google Scholar 

  • Read, H. H., Farquhar, O. C.: The geology of the Arnage district (Aberdeenshire): a reinterpretation. Quart. J. Geol. Soc. London 107, 423–440 (1952).

    Google Scholar 

  • Rittmann, A.: Nomenclature of volcanic rocks. Bull. Volcanol. 12, 75–102 (1952).

    Google Scholar 

  • —: Die Bimodalität des Vulkanismus und die Herkunft der Magmen. Geol. Rundschau 57, 277–295 (1967).

    Article  Google Scholar 

  • Ronov, A. B., Khlebnikova, Z. V.: Chemical composition of the main genetic clay types. Geochemistry, 527–552 (1957).

  • Shaw, D. M.: Geochemistry of pelitic rocks. Part III: Major elements and general geochemistry. Bull. Geol. Soc. Am. 67, 919–934 (1956).

    Google Scholar 

  • Streckeisen, A. L.: Classification and nomenclature of igneous rocks. Neues Jahrb. Mineral., Abhandl. 107, 104–214 (1967).

    Google Scholar 

  • Thornton, C. P., Tuttle, O. F.: Chemistry of igneous rocks. I. Differentiation Index. Am. J. Sci. 258, 664–684 (1960).

    Article  Google Scholar 

  • Turner, F. J.: Metamorphic petrology. New York etc: McGraw-Hill, 1968.

    Google Scholar 

  • Tuttle, O. F., Bowen, N. L.: Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Am. Mem. 74, (1958).

  • Wager, L. R., Bailey, E. B.: Basic magma chilled against acid magma. Nature 172, 68–70 (1953).

    Article  Google Scholar 

  • Walker, G. P. L.: Acid volcanic rocks in Iceland. Bull. Volcanol. 29, 375–402 (1966).

    Google Scholar 

  • —, Skelhorn, R. R.: Some associations of acid and basic igneous rocks. Earth-Sci. Rev. 2, 93–109 (1966).

    Article  Google Scholar 

  • Wilcox, R. E.: Rhyolite-basalt complex on Gardiner River, Yellowstone Park, Wyoming. Bull. Geol. Soc. Am. 55, 1047–1080 (1944).

    Google Scholar 

  • Winkler, H. G. F.: Die Genese der metamorphen Gesteine, second edition. Berlin-Heidelberg-New York: Springer, 1967.

    Google Scholar 

  • Wyllie, P. J., Tuttle, O. F.: Hydrothermal melting of shales. Geol. Mag. 98, 56–66 (1961).

    Article  Google Scholar 

  • Zeck, H. P.: Anatectic origin and further petrogenesis of almandine-bearing biotite-cordierite-labradorite-dacite with many inclusions of restite and basaltoid material, Sherry del Hoyazo, SE Spain. Thesis, Amsterdam University (1968).

  • Zoubek, V.: Le métamorphism d'injection et le métamorphism de contact dans les environs de Pelhrimov. Sb. St. Geol. Ust. ČSR (Prague) 7, 366–413 (1927).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeck, H.P. An erupted migmatite from Cerro del Hoyazo, SE Spain. Contr. Mineral. and Petrol. 26, 225–246 (1970). https://doi.org/10.1007/BF00373202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373202

Keywords

Navigation