Skip to main content
Log in

Stability of almandine in the system FeO-(Fe2O3)-Al2O3-SiO2-(H2O) at elevated pressures

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Almandine, although decomposing in the presence of metallic iron into the anhydrous subsolidus assemblage fayalite + ferrocordierite + hercynite solid solution at low pressures, melts incongruently to hercynitess + quartz + liquid at 10 kb. At pressures between about 12 and 20 kb the products of incongruent melting are hercynitess + liquid only, and at still higher pressures almandine melts congruently. For the intermediate pressures between 2 and 10 kb not investigated a sequence of probable breakdown and melting relations involving the phases ferrocordierite, fayalite, hercynitess, quartz, and liquid is derived through Schreinemakers' analyses.

The lower temperature stability limit of almandine in the presence of water at low oxygen fugacities and pressures of 15 to 20 kb lies between 550° and 600° C as at low pressures. It is marked, however, by the breakdown to a hydrous assemblage involving chloritoid and the new phase aluminous deerite. Since the anhydrous melting at these pressures occurs between 1300° and 1400° C, the thermal stability range of almandine increases drastically with pressure. Its upper breakdown limit shows in principle a similar behavior as those of other garnet end members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrell, S. O., Bown, M. G., McKie, D.: Deerite, howieite, and zussmanite, three new minerals from the Franciscan of the Laytonville District, Mendocino Co., California. Am. Mineralogist 50, 278 (1965).

    Google Scholar 

  • —: Gay, M.: De la deerite dans les Alpes franco-italiennes. Bull. Soc. Franc. Mineral. Crist. 93, 263–264 (1970).

    Google Scholar 

  • Boyd, F. R., England, J. L.: Pyrope. Carnegie Inst. Wash. Year Book 58, 83–87 (1959).

    Google Scholar 

  • —: Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750° C. J. Geophys. Res. 65, 741–748 (1960).

    Google Scholar 

  • Ernst, W. G., Seki, Y., Onuki, H., Gilbert, M. C.: Comparative study of low grade metamorphism in the Californian Coast Ranges and the outer metamorphic belt of Japan. Geol. Soc. Am. Mem. 124, 276 pp. (1970).

    Google Scholar 

  • Fawcett, J. J., Yoder, H. S., Jr.: Phase relationships of chlorites in the system MgO-Al2O3- SiO2-H2O. Am. Mineralogist 51, 353–380 (1966).

    Google Scholar 

  • Green, T. H., Ringwood, A. E.: Origin of garnet phenocrysts in calc-alkaline rocks. Contr. Mineral. and Petrol. 18, 163–174 (1968).

    Google Scholar 

  • Hays, J. F.: Lime-alumina-silica. Carnegie Inst. Wash. Year Book 65, 234–239 (1967).

    Google Scholar 

  • Hensen, B. J.: Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. Unpublished Ph. D. thesis, Australian National University, 214 pp. (1970).

  • Heydemann, P. L. M.: The Bi I-II transition pressure measured with a dead-weight piston gauge. J. Appl. Phys. 38, 2640–2644 (1967).

    Google Scholar 

  • Hsu, L. C.: Selected phase relationships in the system Al-Mn-Fe-Si-O-H: A model for garnet equilibria. J. Petrol. 9, 40–83 (1968).

    Google Scholar 

  • —, Burnham, C. W.: Phase relationships in the system Fe3Al2Si3O12-Mg3Al2Si3O12-H2O at 2.0 kilobars. Geol. Soc. Am. Bull. 80, 2393–2408 (1969).

    Google Scholar 

  • Huckenholz, H. G., Yoder, H. S., Jr.: Andradite stability relations in the CaSiO3-Fe2O3 join up to 30 kb. Neues Jahrb. Mineral., Abhandl. 114, 246–280 (1971).

    Google Scholar 

  • Langer, K., Schreyer, W.: Synthesis and stability of alumino-deerite. Collected Abstracts IMA-IAGOD Meetings 70, Japan, p. 231 (1970).

  • Richardson, S. W.: Staurolite stability in a part of the system Fe-Al-Si-O-H. J. Petrol. 9, 467–488 (1968).

    Google Scholar 

  • Rutherford, M. J.: Phase relations in the system Al2O3-SiO2-Fe-O-H at PFluid=2 kb (abstract). EOS, Trans. Am. Geoph. Union 51, 437 (1970).

    Google Scholar 

  • Schairer, J. F., Yagi, K.: The system FeO-Al2O3-SiO2. Am. J. Sci., Bowen Vol., 471–512 (1952).

  • Schreyer, W.: Zur Stabilität des Ferrocordierits. Beitr. Mineral. Petrog. 11, 297–322 (1965).

    Google Scholar 

  • —: A reconnaissance study of the system MgO-Al2O3SiO2-H2O at pressures between 10 and 25 kb. Carnegie Inst. Wash. Year Book 66, 380–392 (1968).

    Google Scholar 

  • Snow, R. B.: Equilibrium relationships on the liquidus surface in part of the MnO-Al2O3-SiO2 system. J. Am. Ceram. Soc. 26, 11 (1943).

    Google Scholar 

  • Turnock, A. C., Eugster, H. P.: Fe-Al oxides: Phase relationships below 1000° C. J. Petrol. 3, 553–585 (1962).

    Google Scholar 

  • Tuttle, O. F., England, J. L.: Preliminary report on the system SiO2-H2O. Geol. Soc. Am. Bull. 66, 149–152 (1955).

    Google Scholar 

  • Yoder, H. S., Jr.: Role of water in metamorphism. In: Crust of the Earth. Geol. Soc. Am. Spec. Papers 62, 505–524 (1955).

    Google Scholar 

  • —, Chinner, G. A.: Almandite-pyrope-water system at 10000 bars. Carnegie Inst. Wash. Year Book 59, 81–84 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keesmann, I., Matthes, S., Schreyer, W. et al. Stability of almandine in the system FeO-(Fe2O3)-Al2O3-SiO2-(H2O) at elevated pressures. Contr. Mineral. and Petrol. 31, 132–144 (1971). https://doi.org/10.1007/BF00373456

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373456

Keywords

Navigation