Skip to main content
Log in

Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The composition of chromian spinel in alpine-type peridotites has a large reciprocal range of Cr and Al, with increasing Cr# (Cr/(Cr+Al)) reflecting increasing degrees of partial melting in the mantle. Using spinel compositions, alpine-type peridotites can be divided into three groups. Type I peridotites and associated volcanic rocks contain spinels with Cr#<0.60; Type III peridotites and associated volcanics contain spinels with Cr#>0.60, and Type II peridotites and volcanics are a transitional group and contain spinels spanning the full range of spinel compositions in Type I and Type II peridotites. Spinels in abyssal peridotites lie entirely within the Type I spinel field, making ophiolites with Type I alpine-type peridotites the most likely candidates for sections of ocean lithosphere formed at a midocean ridge. The only modern analogs for Type III peridotites and associated volcanic rocks are found in arc-related volcanic and intrusive rocks, continental intrusive assemblages, and oceanic plateau basalts. We infer a sub-volcanic arc petrogenesis for most Type III alpine-type peridotites. Type II alpine-type peridotites apparently reflect composite origins, such as the formation of an island-arc on ocean crust, resulting in large variations in the degree and provenance of melting over relatively short distances. The essential difference between Type I and Type III peridotites appears to be the presence or absence of diopside in the residue at the end of melting.

Based on an examination of co-existing rock and spinel compositions in lavas, it appears that spinel is a sensitive indicator of melt composition and pressure of crystallization. The close similarity of spinel composition fields in genetically related basalts, dunites and peridotites at localities in the oceans and in ophiolite complexes indicates that its composition reflects the degree of melting in the mantle source region. Accordingly, we infer from the restricted range of spinel compositions in abyssal basalts that the degree of mantle melting beneath mid-ocean ridges is generally limited to that found in Type I alpine-type peridotites. It is apparent, therefore, that the phase boundary OL-EN-DI-SP +melt⇋OL-EN-SP+melt has limited the degree of melting of the mantle beneath mid-ocean ridges. This was clearly not the case for many alpine-type peridotites, implying very different melting conditions in the mantle, probably involving the presence of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumento F, Loubat H (1971) The Mid-Atlantic ridge near 45°N., XVI Serpentinized ultramafic intrusions. Can J Earth Sci 8:631–663

    Google Scholar 

  • Arculus RJ, Delano JW (1981) Intrinsic oxygen fugasity measurements: techniques and results for spinels from upper mantle peridotites and megacryst assemblages. Geochim Cosmochim Acta 45:899–913

    Google Scholar 

  • Ballard R, Bryan W, Dick H, Emery KO, Thompson G, Uchupi E, Davis KE, DeBoer J, DeLong S, Fox P, Malcolm F, Spydell R, Stroup J, Melson W, Wright R (1979) Geological and geophysical investigation of the Mid-Cayman Rise Spreading Center: initial results and observations. In: Talwani B, Harrison C, Hayes DE (eds) Deep Drilling Results in the Atlantic Ocean: Ocean Crust, AGU Washington DC, pp 66–94

    Google Scholar 

  • Batiza R, Oestrike R, Futa K (1982) Chemical and isotopic diversity in basalts dredged from the East Pacific Rise at 10°S, the fossil Galapagos Rise and the Nazca Plate. Marine Geol 49:115–132

    Google Scholar 

  • Bonatti E, Honnorez J, Ferrara G (1970) Equatorial Mid-Atlantic Ridge: petrologic and Sr isotopic evidence for an alpine-type rock assemblage: Earth Planet Sci Lett 9:247–256

    Google Scholar 

  • Bonatti E, Hamlyn PR (1978) Mantle uplifted block in the western Indian Ocean: Science 201:249–251

    Google Scholar 

  • Boudier F (1976) Le Massif lherzolitique de Lanzo, étude structurale et petrologique. Unpubl PhD thesis, Universite de Nantes, p 163

  • Boudier F, Nicolas A (1977) Structural controls on partial melting in the Lanzo Peridotite. In: Dick HJB (ed) Magma Genesis Ore Dept Geol Min Ind Bull 96, pp 63–78

  • Brown M (1980) Textural and geochemical evidence for the origin of some chromite deposits in the Oman ophiolite. In: Panayiotou A (ed) Ophiolites, Proceedings International Ophiolite Symposium, Cyprus, 1979. The geological survey of Cyprus, Nicosia, pp 714–721

    Google Scholar 

  • Bryan WB (1972) Mineralogical studies of submarine basalts: Carnegie Inst Wash Yearb 71:396–403

    Google Scholar 

  • Bryan WB (1980) Low K2O dacite from the Tonga-Kermadec island arc: petrography, chemistry and petrogenesis. In: Barker F (ed) Trondjhemites dacites and related rocks, USGS Spec Publ, pp 581–600

  • Bryan WB (1983) Systematics of modal phenocryst assemblages in submarine basalts: Petrologic implications. Contrib Mineral Petrol 83:62–74

    Google Scholar 

  • Bryan WB, Moore JG (1977) Compositional variations of young basalts in the Mid-Atlantic Ridge rift valley near lat. 36°49′N. Geol Soc Am Bull, 88:556–570

    Google Scholar 

  • Burns RG (1973) The partitioning of trace transition elements in crystal structures: a provocative review with applications to mantle geochemistry. Geochim Cosmochim Acta 37:2395–2403

    Google Scholar 

  • Cameron KL, Papike JJ, Bence AE, Sueno S (1973) Petrology of fine-grained rock fragments and petrologic implications of single crystals from the Luna 20 soil. Geochim Cosmochim Acta 37:775–793

    Google Scholar 

  • Cameron WE (1980) Role of multi-stage melting in the formation of oceanic crust, comment. Geology 8:562

    Google Scholar 

  • Cameron WE, Nisbet EG, Dietrich VJ (1979) Boninites, komatiites and ophiolitic basalts. Nature 280:550–553

    Google Scholar 

  • Cameron WE, Nisbet EG, Dietrich VJ (1980) Petrographic dissimilarities between ophiolitic and ocean floor basalts: In: Panayiotou A (ed) Ophiolites, Proceedings International Ophiolite Symposium, Cyprus, 1979. The geological survey of Cyprus, Nicosia, pp 182–193

    Google Scholar 

  • Cassard D, Nicolas A, Rabinovitch M, Moutte J, Leblanc M, Prinzhofer A (1981) Structural classification of chromite pods in southern New Caledonia. Econ Geol 76:805–831

    Google Scholar 

  • Challis GA (1969) Discussion on the paper, “The Origin of Ultramafic and Ultrabasic Rocks”, by PJ Willie. Tectonophysics 7:495–505

    Google Scholar 

  • Challis GA, Lauder WR (1966) The Genetic position of “Alpine” Type Ultramafic Rocks. Bull Volcanol 29:283–306

    Google Scholar 

  • Hurch WR, Stevens RK (1971) Early Paleozoic ophiolite complexes of the Newfoundland Appalachians as mantle-oceanic crust sequences. J Geophys Res 76:1460–1466

    Google Scholar 

  • Clague DA (1976) Petrology of basaltic and gabbroic rocks dredged from the danger island troughs, Manihiki Plateau. Initial Rpts DSDP 33:891–911

    Google Scholar 

  • Coleman RG, Boudier F (1981) Cross section through the Oman Ophiolite, Southeastern Oman Mountains. J Geophys Res 86:2573–2592

    Google Scholar 

  • Coleman RG (1977) Ophiolites: Springer Verlag, New York, p 229

    Google Scholar 

  • Delaney JR, Muenow DW, Graham DG (1978) Abundance and distribution of water carbon and sulphur in the glassy rims of submarine pillow basalts. Geochim Cosmochim Acta 42:581–594

    Google Scholar 

  • Dick HJB (1974) The Josephine Peridotite, a refractory residue of the generation of andesite. Trans Am Geophys Union (EOS) 56:464

    Google Scholar 

  • Dick HJB (1975) Alpine peridotites and ocean lithosphere, a comparison. Trans Am Geophys Union (EOS) 56:1077

    Google Scholar 

  • Dick HJB (1976a) Origin and emplacement of the Josephine Peridotite of southwestern Oregon. Ph D Thesis, Yale University, Univ Microfilms, Ann Arbor, Michigan, p 409

    Google Scholar 

  • Dick HJB (1976b) Spinel in fracture zone “B” and median valley basalts, FAMOUS area, Mid-Atlantic Ridge. Trans Am Geophys Union (EOS) 57:341

    Google Scholar 

  • Dick HJB (1977a) Partial melting in the Josephine Peridotite I, the effect on mineral composition and its consequence for geobarometry and geothermometry. Am J Sci 277:801–832

    Google Scholar 

  • Dick HJB (1977b) Evidence for partial melting in the Josephine Peridotite. Ore Dept Geol Min Ind Bull 96:59–63

    Google Scholar 

  • Dick HJB (1978) Mineralogy of abyssal peridotites from the far South Atlantic Caribbean and Equatorial Atlantic. Abstr with Progr Geol Soc Am 10:388

    Google Scholar 

  • Dick HJB, Bryan WB (1978) Variation of basalt phenocryst mineralogy and rock compositions in DSDP Hole 396B. Initial Rpts DSDP 46:215–225

    Google Scholar 

  • Dick HJB (1979) Abyssal peridotites from the Atlantic and Caribbean Oceans, In: Abstr Papers submitted, International Olphiolite Conference, Cyprus, 1979. The geological survey of Cyprus, Nicosia, p 110

    Google Scholar 

  • Dick HJB and Sinton J (1979) Compositional layering in alpine peridotites: evidence for pressure solution creep in the mantle. J Geol 87:403–416

    Google Scholar 

  • Dick HJB (1980) Vesicularity of Shikoku Basin basalt: a possible correlation with the anomalous depth of back-arc basins. Initial Rpts DSDP 58:895–904

    Google Scholar 

  • Dick HJB (1982) The petrology of two back-arc basins of the northern Philippine Sea. Am J Sci 282:644–700

    Google Scholar 

  • Dick HJB, Fisher RL (1983) Mineralogic studies of the residues of mantle melting. Proceedings 3rd International Kimberlite Conference (publ abstract in Terra Cognita 2:242 (1982)) Developments in Petrology Series, Elsevier (in press)

  • Dick HJB, Fisher RL, Bryan WB (1984) Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet Sci Lett

  • Dickey JS Jr, Yoder HS Jr, Schairer JF (1971) Chromium in silicate-oxide systems. Carnegie Inst Wash Yearb 70:118–122

    Google Scholar 

  • Dmitriev LV, Vinogradov AP, Udintsev GB (1971) Petrology of ultrabasic rocks from rift zones of the Mid-Indian Ocean Ridge. Phil Trans Roy Soc Lond A 268:403–408

    Google Scholar 

  • Duncan RA, Green DH (1980a) Role of multi-stage melting in the formation of oceanic crust. Geology 8:22–26

    Google Scholar 

  • Duncan RA, Green DH (1980b) Role of multi-stage melting in the formation of oceanic crust, Reply. Geology 8:562–563

    Google Scholar 

  • Eales HV, Snowden DV (1979) Chromiferous spinels of the Elephant Heads dike. Mineral Deposita (Berl) 14:227–242

    Google Scholar 

  • Elthon D (1980) High magnesia liquids as the parental magma for ocean floor basalts. Nature 278:514–518

    Google Scholar 

  • Engel CG, Fisher RL (1969) Lherzolite, anorthosite, gabbro and basalt dredged from the Mid-Atlantic Ridge. Sci 166:1136–1141

    Google Scholar 

  • Engel CG, Fisher RL (1975) Granitic to ultramafic rock complexes of the Indian Ocean Ridge system, western Indian Ocean. Geol Soc Am Bull 86:1553–1578

    Google Scholar 

  • Engi M (1983) Equilibria involving Cr-Al spinel: I. Mg-Fe exchange with olivine experiments, thermodynamic analysis and consequences for geothermometry. Am J of Sci, Orville Memorial Vol 238A:29–71

    Google Scholar 

  • Ernst WG (1978) Petrochemical study of lherzolite rocks from the western Alps. J Petrol 19:341–392

    Google Scholar 

  • Ernst WG, Picardo GB (1979) Petrogenesis of some Ligurian Peridotites — I. Mineral and bulk-rock chemistry. Geochim Cosmochim Acta 43:219–237

    Google Scholar 

  • Evans BW, Wright TL (1972) Compositions of Liquidus Chromite from the 1959 and 1965 eruptions of Kilauea Volcano, Hawaii. Am Mineral 57:217–230

    Google Scholar 

  • Evans BW, Frost BR (1975) Chrome-spinel in progressive metamorphism — a preliminary analysis. Geochim Cosmochim Acta 39:959–972

    Google Scholar 

  • Fisk MR, Bence AE (1980) Experimental crystallization of chrome spinel in FAMOUS basalt 527-1-1. Earth Planet Sci Lett 48:111–123

    Google Scholar 

  • Frey FA, Bryan WB, Thompson G (1974) Atlantic ocean floor: geochemistry and petrology of basalts from legs 2 and 3 of the Deep-Sea Drilling Project. J Geophys Res 79:5507–5527

    Google Scholar 

  • Garcia MO, Liu NWK, Muenow DW (1979) Volatiles in submarine volcanic rocks from the Mariana island arc and trough. Geochim Cosmochim Acta 43:305–312

    Google Scholar 

  • George RP Jr (1978) Structural petrology of the Olympus ultramafic complex in the Troodos ophiolite, Cyprus, Nicosia. Geol Soc Am Bull 89:845–865

    Google Scholar 

  • Graham AL, Symes RF, Bevan JC, Din VK (1979) Chromiumbearing spinels in some rocks of Leg 45: Phase chemistry, zoning and relation to host basalts chemistry. Initial Rpts DSDP 45:581–586

    Google Scholar 

  • Green DH (1973) Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19:37–53

    Google Scholar 

  • Green DH, Ringwood AE (1967) The Genesis of Basaltic Magmas. Contrib Mineral Petrol 15:103–190

    Google Scholar 

  • Green DH, Ringwood AE, Ware NG, Hibberson WO, Major A (1971) Experimental petrology and petrogenesis of Apollo 12 basalts Proc Second Lunar Sci Conf 1:601–615

    Google Scholar 

  • Green DH, Hibberson WO, Jaques AL (1979) Petrogenesis of midocean ridge basalts. In: McElhinny (ed) The Earth: its Origin, Structure and Evolution. Academic Press:165–299

  • Greenbaum D (1972b) The Geology and Evolution of the Troodos Plutonic Complex and Associated Chromite Deposits, Cyprus, Nicosia. Ph D Thesis, Univ of Leeds, England, p 142

    Google Scholar 

  • Hamlyn PR, Bonatti E (1980) Petrology of mantle-derived ultramafics from the Owen Fracture Zone, Northwest Indian Ocean: Implications for the nature of the oceanic upper mantle. Earth Planet Sci Lett 48:65–79

    Google Scholar 

  • Hanson GN, Langmuir CH (1978) Modelling of major elements in mantle-melt systems using trace element approaches. Geochim Cosmochim Acta 42:725–741

    Google Scholar 

  • Harper GD (1980) The Josephine ophiolite — remains of a late Jurassic marginal basin in Northwestern California. Geology 7:333–337

    Google Scholar 

  • Hart SR, Davis KE (1978) Nickel partitioning between olivine and silicate melt. Earth Planet Sci Lett 40:203–219

    Google Scholar 

  • Hawkins JW (1977) Petrologic and geochemical characteristics of marginal basin basalts. In: Talwani M, Pitman WC (eds) Island Arcs and Deep Sea Trenches. Am Geophys Un Maurice Ewing Ser 1:355–365

  • Henry DJ, Medaris LG Jr (1980) Application of pyroxene and olivine-spinel geothermometers to spinel peridotites in southwestern Oregon. Am J Sci 280-A 1:211–231

    Google Scholar 

  • Hess PC (1971) Polymer model of silicate melts. Geochim Cosmochim Acta 35:289–307

    Google Scholar 

  • Hill R, Roeder P (1974) The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. J Geol 82:709–729

    Google Scholar 

  • Hopson CA, Coleman RG, Gregory RT, Pallister JS, Bailey EH (1981) Geologic section through the Samail Ophiolite and associated rocks along a Muscat-Ibra transect, Southeastern Oman Mountains. J Geophys Res 86:2527–2544

    Google Scholar 

  • Irvine TN (1965) Chromian spinel as a petrogenetic indicator; Part 1, Theory: Can J Earth Sci 2:648–671

    Google Scholar 

  • Irvine TN (1967) Chromian Spinel As a Petrogenetic Indicator, Part 2 Petrologic Applications. Can J Earth Sci 4:71–103

    Google Scholar 

  • Irvine TN (1974) Petrology of the Duke Island Ultramafic Complex, Southeastern Alaska. Geol Soc Am Mem 138:p 240

    Google Scholar 

  • Irvine TN (1976) Chromite crystallization in the join Mg2SiO4-CaMgSi2O6-CaAl2Si2O8-MgCr2O4-SiO2. Carnegie Inst Wash Yearb 76:465–472

    Google Scholar 

  • Irvine TN (1977) Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: a new interpretation. Geology 5:273–277

    Google Scholar 

  • Irvine TN, Findlay TC (1972) Alpine-type peridotite with particular reference to the Bay of Islands igneous complex. In: The Ancient Ocean Lithosphere, Publications of the Earth Physics Branch, Dept Energy Mines and Resources Ottawa Canada 43 no 3, pp 97–126

  • Jackson ED (1969) Chemical variation in coexisting chromite and olivine in chromitite zones of the Stillwater Complex. In: Wilson HDB (ed) Magmatic Ore Deposits. Econ Geol Mon 4:41–47

  • Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 73:287–310

    Google Scholar 

  • Jaques Al (1981) Petrology and petrogenesis of cumulate peridoties and gabbros from the Marum Ophiolite Complex, northern Papua, New Guinea. J Petrol 22:1–40

    Google Scholar 

  • Kornprobst J (1969) Le massif ultrabasique des Beni Bouchera (rif interne, Maroc): Etude des peridotites de haute temperature et de haute pression et des pyroxenolites, a grenat ou sous grenat, qui leur sont associees. Contrib Mineral Petrol 23:283–322

    Google Scholar 

  • Kurat G, Palme H, Spettel B, Baddenhausen H, Hetmeisler H, Palme C, Wanke H (1980) Geochemistry of ultramafic xenoliths from Kapfenstein, Austria: evidence for a variety of upper mantle processes. Geochim Cosmochim Acta 44:45–60

    Google Scholar 

  • Kushiro I (1969) The system forsterite — diopside — silica with and without water at high pressures. Am J Sci 267-A:269

    Google Scholar 

  • Kushiro I, Yoder HS, Mysen BO (1976) Viscosity of basalt and andesite magmas at high pressure. Trans Am Geophys Un (Eos) 57:354

    Google Scholar 

  • Langmuir CH, Bender JF, Bence AE, Hanson GN, Taylor SR (1971) Petrogenesis of basalts from the FAMOUS area, MidAtlantic Ridge. Earth Planet Sci Lett 73:5925–5941

    Google Scholar 

  • Lawver LA, Dick HJB (1983) The America-Antarctica Ridge. J Geophys Res 88:8193–8202

    Google Scholar 

  • Leblanc M, Dupuy C, Cassard D, Moutte J, Nicolas A, Prinzhoffer A, Rabinovitch M, Routhier P (1980) Essai sur la genese des corps podiformes de chromitite dans les peridotites ophiolitiques: Etude des chromites Nouvelle-Caledonie et comparaism avec celles de Mediterranee orientale. In: Panayiotou A (ed) Ophiolites, Proceedings International Ophiolite Symposium, Cyprus, 1979. The geological survey of Cyprus, Nicosia, pp 691–701

    Google Scholar 

  • Liou JG (1974) Mineralogy and chemistry of glassy basalts, coastal range ophiolites, Taiwan. Geol Soc Am Bull 85:1–10

    Google Scholar 

  • Malpas J, Strong DF (1975) A comparison of chrome spinels in ophiolites and mantle diapirs of Newfoundland. Geochim Cosmochim Acta 39:1045–1060

    Google Scholar 

  • Mattey DP, Marsh NG, Tarney J (1981) The geochemistry, mineralogy, and petrology of basalts from the west Philippine and Parece Vela basins and from the Palau-Kyushu and west Mariana ridges, Deep Sea Drilling Project, Leg 59. Initial Rpts DSDP 59:753–800

    Google Scholar 

  • Melson WG, Hart SR, Thompson G (1972) St. Paul's rocks, Equatorial Atlantic: petrogenesis, radiometric ages, and implications on sea-floor spreading. Geol Soc Am Mem 132:241–272

    Google Scholar 

  • Melson WG, Vallier TL, Wright TL, Byerly G, Nelen J (1976) Chemical diversity of abyssal volcanic glass empted along Pacific, Atlantic and Indian Ocean sea-floor spreading centers. Am Geophys Union 19:351–368

    Google Scholar 

  • Menzies M, Allen C (1974) Plagioclase lherzolite-Residual Mantle Relationships within two eastern Mediterranean Ophiolites. Contrib Mineral Petrol 45:197–213

    Google Scholar 

  • Menzies M, Blanchard D, Xenophontos C (1980) Genesis of the Smartville Arc-ophiolite, Sierra Nevada foothills, California. Am J Sci 280-A:329–344

    Google Scholar 

  • Miyashiro A (1973) The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet Sci Lett 19:218–224

    Google Scholar 

  • Miyashiro A, Shido F, Ewing M (1969) Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24° and 30° North Latitude. Contrib Mineral Petrol 23:117–127

    Google Scholar 

  • Mo X, Carmichael ISE, Rivers M, Stebbins J (1982) The partial molar volume of Fe2O3 in multicomponent silicate liquids and the pressure dependence of oxygen fugacity in magmas. Mineral Mag 45:237–245

    Google Scholar 

  • Moutte J (1979) Le Massif de Tiebaghi, Nouvelle Caledonia, et ses gites de chromite. Unpubl Ph D thesis. L'ecole Nationale Superieure des Mines de Paris, p 158

  • Murray CG (1972) Zoned ultramafic complexes of the Alaskan type: feeder pipes of andesite volcanoes. In: Shagam RE and others (eds) Studies in Earth and Space Sciences (Hess Volume). Geol Soc Am Mem 132:313–335

  • Natland JH, Melchior J (1984) Chromian spinels in three East Pacific Rise tholeiites dredged from the Siqueiros Fracture Zone. (In Press)

  • Neary CR, Brown MA (1979) Chromites from the Al' Ays complex, Saudi Arabia, and the Semail Complex Oman. IAG Bull 2:193–205

    Google Scholar 

  • Nicolas A, Boudier F, Bouchez JL (1980) Interpretation of peridotite structures from ophiolitic and oceanic environments. Am J Sci 280-A:192–210

    Google Scholar 

  • Nicolas A, Jackson ED (1972) Repartition en deux provinces des peridotites des chaines alpines longeant la Mediterranee: implications geotectonique. Schweiz Mineral Petrogr Mitt 52:479–495

    Google Scholar 

  • Obata M (1977) Petrology and Petrogenesis of the Ronda High — Temperature Peridotite Intrusion, Southern Spain. Unpubl Ph D dissertation, Massachusetts Institute of Technology, p 220

  • Onyeagocha AC (1973) Petrology and Mineralogy of the Twin Sisters Dunite. Unpubl Ph D dissertation, Univ Washington, p 135

  • Osborn EF (1969) The Complementariness of Orogenic Andesite and Alpine Peridotite. Geochim Cosmochim Acta 33:307–324

    Google Scholar 

  • Pallister JS, Hopson CA (1981) Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. J Geophys Res 86:2593–2644

    Google Scholar 

  • Phillips JD, Thompson G, von Herzen RP, Bowen VT (1969) MidAtlantic Ridge near 43°N Latitude. J Geophys Res 74:3069–3081

    Google Scholar 

  • Quick JE (1981a) Petrology and petrogenesis of the Trinity Peridotite, an upper mantle diapir in the eastern Klamath Mountains, Northern California. J Geophys Res 86:11837–11864

    Google Scholar 

  • Quick JE (1981b) The origin and significance of large, tabular dunite bodies in the Trinity Peridotite, Northern California. Contrib Mineral Petrol 78:413–422

    Google Scholar 

  • Riccio L (1976) Stratigraphy and petrology of the peridotite-gabbro component of the western Newfoundland ophiolites. Unpubl Ph D thesis, Univ of Western Ontario, London Ont, p 265

    Google Scholar 

  • Ridley WI, Rhodes JM, Reid AM, Jakes P, Shih C, Bass MN (1974) Basalts from Leg 6 of the Deep Sea Drilling Project. J Petrol 15:140–159

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Google Scholar 

  • Sato M (1978) Oxygen fugacity of basaltic magmas and the role of gas forming elements. Geophys Res Lett 5:447–449

    Google Scholar 

  • Saunders AD, Tarney J (1979) The geochemistry of basalts from a back-arc spreading centre in the East Scotia Sea. Geochim Cosmochim Acta 43:555–572

    Google Scholar 

  • Shido F, Miyashiro A (1971) Crystallization of abyssal tholeiites. Contrib Mineral Petrol 31:251–266

    Google Scholar 

  • Sigurdsson H (1977) Spinels in Leg 37 basalts and peridotites: phase chemistry and zoning. Initial Rpts DSDP 37:883–892

    Google Scholar 

  • Sigurdsson H (1981) First order major element variation in basalt glasses from the Mid-Atlantic Ridge: 29°N to 73°N. J Geophys Res 86:9383–9502

    Google Scholar 

  • Sigurdsson H, Schilling JG (1976) Spinels in Mid-Atlantic Ridge basalts: chemistry and occurrence. Earth Planet Sci Lett 29:7–20

    Google Scholar 

  • Sinton JM (1979) Petrology of (alpine-type) peridotites from site 395, DSDP Leg 45: Initial Rpts DSDP 45:595–602

    Google Scholar 

  • Smewing JD (1981) Mixing characteristics and compositional differences in mantle — derived melts beneath spreading axes: evidence from cyclically layered rocks in the ophiolite of North Oman. J Geophys Res 86:2645–2660

    Google Scholar 

  • Stevens RE (1944) Composition of some chromites of the western hemisphere. Am Mineral 29:1–34

    Google Scholar 

  • Stoeser DB (1975) Igneous rocks from Leg 30 of the Deep Sea Drilling Project. Initial Rpts DSDP 30:401–414

    Google Scholar 

  • Talkington RW (1981) The geology and petrogenesis of the White Hills Peridotite, St Anthony Complex, northwestern Newfoundland. Unpubl Ph D Thesis, Memorial Univ. Newfoundland, Can, p 292

    Google Scholar 

  • Tatsumi I (1981) Melting experiments on a high-magnesian andesite. Earth Planet Sci Lett 54:357–365

    Google Scholar 

  • Tatsumi I, Ishizaka K (1981) Existence of andesitic primary magma: an example from S.W. Japan. Earth Planet Sci Lett 53:124–130

    Google Scholar 

  • Thayer TP (1969) Gravity differentiation and magmatic re-emplacement of podiform chromite deposits. In: Wilson HDB (ed) Econ Geol Mon 4, Magmatic Ore Deposits, pp 132–146

  • Thayer TP (1970) Chromite segregations as petrogenetic indicators. Geol Soc S Africa Spec Publ 1:380–390

    Google Scholar 

  • Thayer TP, Himmelberg GR (1968) Rock succession in the alpinetype mafic complex at Canyon Mountain, Oregon: XXIII International Geological Congress, 1:175

    Google Scholar 

  • Tokuyama H, Batiza R (1981) Chemical composition of igneous rocks and origin of the sill and pillow basalt complex of Nauru Basin, southwest Pacific. Initial Rpts DSDP 61:673–687

    Google Scholar 

  • Udintsev GB, Dmitriev LV (1971) Ultrabasic Rocks. The Sea 4:520–573

    Google Scholar 

  • Vogt JHL (1921) The physical chemistry of the crystallization and magmatic differentiation of igneous rocks. J Geol 29:318–350

    Google Scholar 

  • Waff H (1975) Pressure induced co-ordination changes in magmatic liquids. Geophys Res Lett 2:193–196

    Google Scholar 

  • Wright TL, Kinoshita WT (1968) March 1965 eruption of Kilauea Volcano and the formation of Makaopuli Lava Lake. J Geophys Res 73:3181–3205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dick, H.J.B., Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contr. Mineral. and Petrol. 86, 54–76 (1984). https://doi.org/10.1007/BF00373711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373711

Keywords

Navigation