Skip to main content
Log in

A regular solution model for met-aluminous silicate liquids: Applications to geothermometry, immiscibility, and the source regions of basic magmas

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Adopting a set of multioxide components and using published compositional data on olivineand plagioclase-liquid equilibria we have developed a 17 component regular solution model for met-aluminous silicate liquids. The partial molar excess free energies predicted from this model can be used together with phenocryst compositions as an effective geothermometer, with an approximate error of 20 °C (30 °C for olivine, 12 °C for plagioclase). The regular solution formulation is also successful in predicting liquid immiscibility at (1) high mole fractions of silica commonly observed in phase diagrams, and at (2) lower temperatures in lunar basalts and intermediate lavas. The model yields activities of silica which are consistent with those obtained from solid-liquid silica buffers in rocks which contain olivine and enstatite or quartz. From predicted activities of KAlSi3O8 in liquids coexisting with plagioclase a value is obtained for the limiting Henry's law activity coefficient of KAlSi3O8 in the solid. This coefficient agrees well with that inferred from plagioclase-sanidine equilibrium phenocryst assemblages in rhyolites. The activities of silica obtained from this model are used to place constraints on the pressure-temperature regions where various types of basic magmas are generated. In conjunction with plagioclase geothermometry an application is given where the pressure, temperature, and water content of an olivine andesite is predicted from the activity of silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baidov, V.V., L.L. Kunin: Speed of ultrasound and compressibility of molten silicates. Sov. Phys. Dokl. 13, 64–64 (1968)

    Google Scholar 

  • Bender, J.F., F.N. Hodges, A.E. Bence: Petrogenesis of basalts from the project Famous area: experimental study from 0 to 15 kbars. Earth Planet. Sci. Lett. 41, 277–302 (1978)

    Google Scholar 

  • Birch, F.: Compressibility; elastic constants. In: Handbook of Physical Constants (ed. S.P. Clark Jr.) Geol. Soc. Am. Mem. 97, 97–173 (1966)

  • Bockris, J.O'M., E. Kojonen: The compressibilities of certain molten alkali silicates and borates. J. Am. Chem. Soc. 82, 4493–4497 (1960)

    Google Scholar 

  • Bottinga, Y., P. Richet: Thermodynamics of liquid silicates, a preliminary report. Earth Planet. Sci. Lett. 40, 382–400 (1978).

    Google Scholar 

  • Bowen, N.L.: The Evolution of the Igneous Rocks, pp. 251. New York: Dover Publ. Inc. 1928

    Google Scholar 

  • Boyd, F.R., J.L. England: Effect of pressure on the melting of diopside, CaMgSi2O6 and albite, NaAlSi3O8 in the range up to 50 lbars. J. Geophys. Res. 68, 311–323 (1963)

    Google Scholar 

  • Boyd, F.R., J.L. England, B.T.C. Davis: Effects of pressure on the melting and polymorphism of enstatite, MgSiO3. J. Geophys. Res. 69, 2101–2109 (1964)

    Google Scholar 

  • Carmichael, I.S.E.: The pyroxenes and olivines from some Tertiary acid glasses. J. Petrol. 1, 309–336 (1960)

    Google Scholar 

  • Carmichael, I.S.E.: Pantelleritic liquids and their phenocrysts. Mineral. Mag. 33, 86–113 (1962)

    Google Scholar 

  • Carmichael, I.S.E.: The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib. Mineral. Petrol. 14, 36–64 (1967)

    Google Scholar 

  • Carmichael, I.S.E., J. Nicholls, A.L. Smith: Silica activity in igneous rocks. Am. Mineral. 55, 246–263 (1970)

    Google Scholar 

  • Carmichael, I.S.E., J. Nicholls, F.J. Spera, B.J. Wood, S.A. Nelson: High temperature properties of silicate liquids: applications to the equilibration and ascent of basic magma. Phil. Trans. R. Soc. London Ser. A: 286, 373–431 (1977)

    Google Scholar 

  • Carmichael, I.S.E., F.J. Turner, J. Verhoogen: Igneous Petrology, pp. 739. New York: McGraw Hill Book Company, (1974)

    Google Scholar 

  • Chen, C.-H., D.C. Presnall: The system Mg2SiO4-SiO2 at pressures up to 25 kbars. Am. Mineral 60, 398–406 (1975)

    Google Scholar 

  • Davis, B.T.C., J.L. England: The melting of forsterite up to 50 kbars. J. Geophys. Res. 69, 1113–1116 (1964)

    Google Scholar 

  • De Paolo, D.J.: Estimation of the depth of origin of basic magmas: a modified thermodynamic approach and a comparison with experimental melting studies. Contrib. Mineral. Petrol. 69, 265–278 (1979)

    Google Scholar 

  • Drake, M.J.: The distribution of major and trace elements between plagioclase feldspar and magmatic silicate liquid; an experimental study. Unpublished Ph.D. thesis, University Oregon 1972

  • Eggler, D.H.: Water saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contrib. Mineral. Petrol. 34, 261–271 (1972)

    Google Scholar 

  • Eggler, D.H., C.W. Burnham: Crystallization and fractionation trends in the system andesite-H2O-CO2-O2 at pressures to 10 kbar. Geol. Soc. Am. Bull. 84, 2517–2532 (1973)

    Google Scholar 

  • Fairbairn, H.W., W.G. Schleet, R.E. Stevens, W.H. Dennen, W.H. Ahrens, F. Chayes: A cooperative investigation of precision and accuracy in chemical, spectrochemical and modal analysis of silicate rocks. U.S. Geol. Surv. Bull. 980 (1951)

  • Ferrier, A.: Etude experimentale de l'enthalpie de l'anorthite synthetique entre 298 et 1950 K. C. R. Acad. Sci. Ser. C: 269, 951–954 (1969)

    Google Scholar 

  • Goldsmith, J.R.: Melting and breakdown reactions of anorthite at high pressures and temperatures. Trans. Am. Geophys. Union 60, 420 (1979)

    Google Scholar 

  • Green, D.H., W.O. Hibberson, A.L. Jaques: Petrogenesis of midocean ridge basalts. In: The Earth: Its Origin, Structure and Evolution (M.W. McElhinny ed.) Acad. Press in press

  • Helgeson, H.C., J.M. Delany, H.W. Nesbitt, D.K. Bird: Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 278, 229 (1978)

    Google Scholar 

  • Helz, R.T.: Phase relations of basalts in their melting range at P H 2O=5 kbar as a function of oxygen fugacity. Part I. Mafic Phases. J. Petrol. 14, 249–302 (1973)

    Google Scholar 

  • Helz, R.T.: Phase relations of basalts in their melting ranges at P H 2O=5 kbar. Part II. Melt compositions. J. Petrol. 17, 139–193 (1976)

    Google Scholar 

  • Hildreth, E.W.: The magma chamber of the Bishop Tuff: gradients in temperature, pressure, and composition. Unpublished Ph.D. thesis, University of California Berkeley 1977

  • Kelley, K.K.: Contributions to the data on theoretical metallurgy: part 13, high temperature heat content, heat capacity and entropy data for the elements and inorganic compounds. U.S. Bur. Mines Bull. 584, p. 232 (1960)

    Google Scholar 

  • Kerrick, D.M., L.S. Darken: Statistical thermodynamic models for ideal oxide and silicate solid solutions, with applications to plagioclase. Geochim. Cosmochim. Acta 39, 1431–1442 (1975)

    Google Scholar 

  • Leeman, W.P.: Experimental determination of partitioning of divalent cations between olivine and basaltic liquid Part II. Unpublished Ph.D. thesis, University of Oregon 1974

  • Lindsley, D.H.: Pressure-temperature relations in the system FeO-SiO2. Carnegie Inst. Washington Yearb. 65, 226–230 (1967)

    Google Scholar 

  • Lindsley, D.H.: Melting relations of plagioclase at high pressures. N.Y. State Mus. Sci. Serr. Mem. 18, 39–46 (1968)

    Google Scholar 

  • Longhi, J., D. Walker, J.F. Hays: The distribution of Fe and Mg between olivine and lunar basaltic liquids. Geochim. Cosmochim. Acta 42, 1545–1558 (1978)

    Google Scholar 

  • Luhr, J.F., I.S.E. Carmichael: The Colima volcanic complex. Part I. The post-caldera andesites. Contrib. Mineral. Petrol. [In press (1979)]

  • Mysen, B.O., A.L. Boettcher: Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. J. Petrol. 16, 520–548 (1975)

    Google Scholar 

  • Mysen, B.O., I. Kushiro: Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. Am. Mineral. 62, 843–856 (1977)

    Google Scholar 

  • Nelson, S.A., I.S.E. Carmichael: Partial molar volumes of oxide components in silicate melts. Contrib. Mineral. Petrol, [in press (1979)]

  • Newton, K.C.: Thermochemistry of garnets and aluminous pyroxenes in the CMAS system. In: Thermodynamics in Geology (D.C. Fraser, ed.), pp. 29–56. Holland: D. Reidel 1976

    Google Scholar 

  • Nicholls, J., I.S.E. Carmichael, J.C. Stormer: Silica activity and P total in igneous rocks. Contr. Mineral. Petrol. 33, 1–20 (1971)

    Google Scholar 

  • Orr, R.L.: High temperature heat contents of magnesium orthosilicate and ferrous orthosilicate. J. Am. Chem. Soc. 75, 528–529 (1953)

    Google Scholar 

  • Philpotts, A.R.: Silicate liquid immiscibility in tholeiitic basalts. J. Petrol. 20, 99–118 (1979)

    Google Scholar 

  • Robie, R.A., B.S. Hemingway, J.R. Fisher: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures, U.S. Geol. Surv. Bull. 1452, 456 pp (1978)

    Google Scholar 

  • Roeder, P.L.: Activity of iron and olivine solubility in basaltic liquids. Earth. Planet. Sci. Lett. 23, 397–410 (1974)

    Google Scholar 

  • Roedder, E.: Silicate liquid immiscibility in magmas and in the system K2O-FeO-Al2O3-SiO2: an example of serendipity. Geochim. Cosmochim. Acta 42, 1597–1618 (1978)

    Google Scholar 

  • Rosenhauer, M., D.H. Eggler: Solution of H2O and CO2 in diopside melt. Carnegie Inst. Washington Yearb. 74, 474–479 (1975)

    Google Scholar 

  • Skinner, B.J.: Thermal expansion. In: Handbook of Physical Constants (S.P. Clark Jr, ed.). Geol. Soc. Am. Mem. 97. 75–96 (1966)

  • Takahashi, E.: Partitioning of Ni2+, Co2+, Fe2+, Mn2+ and Mg2+ between olivine and silicate melts: compositional dependence of partition coefficient. Geochim. Cosmochim. Acta 42, 1829–1844 (1978)

    Google Scholar 

  • Thompson, J.B., D.R. Waldbaum: Mixing properties of sanidine crystalline solutions: (I) Calculations based on ion exchange data. Am. Mineral. 53, 1965–1999 (1968)

    Google Scholar 

  • Thompson, R.N.: Primary basalts and magma genesis I. Contrib. Mineral. Petrol. 45, 317–341 (1974)

    Google Scholar 

  • Thompson, R.N.: Primary basalts and magma genesis II. Contrib. Mineral. Petrol. 52, 213–232 (1975)

    Google Scholar 

  • Walker, D., T. Shibata, S.E. Delong: Abyssal tholeiites from the Oceanographer fracture zone. II. Phase equilibria and mixing. Contrib. Mineral. Petrol. 70, 111–125 (1979)

    Google Scholar 

  • Weill, D.F., R. Hon, A. Navrotsky: The igneous system CaMgSi2O6-CaAl2Si2O8-NaAlSi3O8: variations on a classic theme by Bowen. In: Physics of magmatic processes. in press Princeton Univ. Press 1980

  • Windom, K.E., A.L. Boettcher: Melting relations in the system NaAlSiO4-Mg2SiO4-SIO2 at high pressures. Trans. Am. Geophys. Union 58, 521 (1977)

    Google Scholar 

  • Wood, B.J.: Experimental determination of mixing properties of solid solutions with particular reference to garnet and clinopyroxene solutions, In: Thermodynamics in Geology (D.C. Fraser, ed.) pp. 11–28 Holland: D. Reidel 1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghiorso, M.S., Carmichael, I.S.E. A regular solution model for met-aluminous silicate liquids: Applications to geothermometry, immiscibility, and the source regions of basic magmas. Contr. Mineral. and Petrol. 71, 323–342 (1980). https://doi.org/10.1007/BF00374706

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00374706

Keywords

Navigation