Skip to main content
Log in

Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper treats the homogenization of the Stokes or Navier-Stokes equations with a Dirichlet boundary condition in a domain containing many tiny solid obstacles, periodically distributed in each direction of the axes. (For example, in the three-dimensional case, the obstacles have a size of ε3 and are located at the nodes of a regular mesh of size ε.) A suitable extension of the pressure is used to prove the convergence of the homogenization process to a Brinkman-type law (in which a linear zero-order term for the velocity is added to a Stokes or Navier-Stokes equation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Allaire, Homogénéisation des équations de Stokes et de Navier-Stokes, Thèse, Université Paris 6 (1989).

  2. G. Allaire, Homogenization of the Stokes flow in a connected porous medium, Asymptotic Analysis, 2, pp. 203–222 (1989).

    Google Scholar 

  3. G. Allaire, Homogénéisation des équations de Stokes dans un domaine perforé de petits trous répartis périodiquement, Comptes Rendus Acad. Sci. Paris, Série I, 11, pp. 741–746 (1989).

    Google Scholar 

  4. G. Allaire, Homogenization of the Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math, (to appear).

  5. H. Attouch & C. Picard, Variational inequalities with varying obstacles: the general form of the limit problem, J. Funct. Analysis 50, pp. 329–386 (1983).

    Google Scholar 

  6. A. Bensoussan, J. L. Lions & G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland (1978).

  7. A. Brillard, Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods, Ann. Fac. Sci. Toulouse 8, 2 pp. 225–252 (1986).

    Google Scholar 

  8. H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res. A1, pp. 27–34 (1947).

    Google Scholar 

  9. D. Cioranescu & F. Murat, Un terme étrange venu d'ailleurs, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vols. 2 & 3, ed. by H. Brezis & J. L. Lions, Research Notes in Mathematics 60, pp. 98–138, and 70, pp. 154–178, Pitman, London (1982).

    Google Scholar 

  10. C. Conca, The Stokes sieve problem, Comm. in Appl. Num. Meth. 4, pp. 113–121 (1988).

    Google Scholar 

  11. E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell' area, Rendiconti di Mat. 8, pp. 277–294 (1975).

    Google Scholar 

  12. E. De Giorgi, G-operators and Г-convergence, Proceedings of the International Congress of Mathematicians (Warsaw, August 1983), PWN Polish Scientific Publishers and North Holland, pp. 1175–1191 (1984).

  13. F. Finn, Mathematical questions relating to viscous fluid flow in an exterior domain, Rocky Mountain J. Math. 3, pp. 107–140 (1973).

    Google Scholar 

  14. H. Kacimi, Thèse de troisième cycle, Université Paris 6 (1988).

  15. H. Kacimi & F. Murat, Estimation de l'erreur dans des problèmes de Dirichlet ou apparait un terme étrange, Partial Differential Equations and the Calculus of Variations: Essays in Honor of Ennio De Giorgi, ed by F. Colombini, A. Marino, L. Modica & S. Spagnolo, Birkhäuser, Boston, pp. 661–696 (1989).

    Google Scholar 

  16. J. B. Keller, Darcy's law for flow in porous media and the two-space method, Lecture Notes in Pure and Appl. Math. 54, Dekker, New York (1980).

    Google Scholar 

  17. R. V. Kohn & M. Vogelius, A new model for thin plates with rapidly varying thickness: II a convergence proof, Quart. Appl. Math. 43, pp. 1–22 (1985).

    Google Scholar 

  18. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach (1969).

  19. T. Levy, Fluid flow through an array of fixed particles, Int. J. Engin. Sci. 21, pp. 11–23 (1983).

    Google Scholar 

  20. J. L. Lions, Some Methods in the Mathematical Analysis of Systems and Their Control, Beijing, Gordon and Breach, New York (1981).

    Google Scholar 

  21. R. Lipton & M. Avellaneda, A Darcy law for slow viscous flow past a stationary array of bubbles, Proc. Roy. Soc. Edinburgh 114A, pp. 71–79 (1990).

    Google Scholar 

  22. V. A. Marčenko & E. Ja. Hrouslov, Boundary Problems in Domains with Finely Granulated Boundaries (in Russian), Naukova Dumka, Kiev (1974).

    Google Scholar 

  23. J. Rubinstein, On the macroscopic description of slow viscous flow past a random array of spheres, J. Stat. Phys. 44, pp. 849–863 (1986).

    Google Scholar 

  24. E. Sanchez-Palencia, On the asymptotics of the fluid flow past an array of fixed obstacles, Int. J. Engin. Sci. 20, pp. 1291–1301 (1982).

    Google Scholar 

  25. E. Sanchez-Palencia, Non homogeneous media and vibration theory, Lecture Notes in Physics 127, Springer-Verlag (1980).

  26. E. Sanchez-Palencia, Problèmes mathématiques liés à l'écoulement d'un fluide visqueux à travers une grille, Ennio de Giorgi Colloquium, ed. by P. Krée, Research Notes in Mathematics 125, pp. 126–138, Pitman, London (1985).

    Google Scholar 

  27. E. Sanchez-Palencia, Boundary-value problems in domains containing perforated walls, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. 3, ed. by H. Brezis & J. L. Lions, Research Notes in Mathematics 70, pp. 309–325, Pitman, London (1982).

    Google Scholar 

  28. L. Tartar, Convergence of the homogenization process, Appendix of [25].

  29. L. Tartar, Cours Peccot au Collège de France, Unpublished (mars 1977).

  30. L. Tartar, Topics in Nonlinear Analysis, Publications mathématiques d'Orsay 78.13, Université de Paris-Sud (1978).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Ball

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allaire, G. Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes. Arch. Rational Mech. Anal. 113, 209–259 (1991). https://doi.org/10.1007/BF00375065

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375065

Keywords

Navigation