Skip to main content
Log in

The Miocene-Pliocene Macusani Volcanics, SE Peru

II. Geochemistry and origin of a felsic peraluminous magma

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Miocene-Pliocene Macusani ash-flow tuffs from SE Peru, containing magmatic andalusite and muscovite, have homogeneous major element compositions, with a narrow range of SiO2 (71–74 wt%), high Al2O3 (normative corundum >2%; A/CNK>1.2) and alkalis, and low FeOt, MgO, CaO, TiO2. P2O5, F, Li2O, and B2O3 are also high. The associated obsidian glasses are more felsic and peraluminous and extremely enriched in F, P, Li and B compared to the ash-flow tuffs. These are compositionally similar to Himalayan or Hercynian two-mica granites and the obsidian glasses to some rare fractionated members of the two-mica granite series. Both ash-flow tuffs and obsidian glasses show enrichments in lithophile trace elements (Be, Zn, As, Rb, Nb, Sn, Sb, Cs, Ta, W, U) and depletions in Cl, S, Sc, V, Cr, Co, Ni, Cu, Y, Mo, Hf. REE patterns for the ash-flow tuffs are fractionated (La/Lu n =13-26) with a moderate Eu anomaly and they contrast with patterns for the obsidian glasses characterized by lower total REE, lower La/Lu n and Eu/Eu*. Sr(87Sr/86Sr initial ratio= 0.721–0.726), Pb (206Pb/204Pb=18.74–19.45; 207P/204Pb= 15.66–15.72) and Nd isotopic compositions (ɛ Nd=-8.96 to-9.35) are typically crustal. Oxygen isotopic compositions are high in 18O (glasses:δ18O=+12‰; quartz:δ18O=+ 11.5 to +12.7‰). Batch melting of isotopically heterogeneous source rocks is suggested by the Sr and Pb data. In contrast to major elements, trace elements demonstrate compositional differences between erupted magmas. The last erupted magmas are less fractionated relative to the first erupted.

The Macusani magmas are direct products of crustal melting. There is no evidence for mixing or assimilation by a foreign, meta- to sub-aluminous magma, although mafic magmas are considered to be likely sources of heat for melting. Source rocks dominantly consisted of metapelites. Models of magma generation based on external control of \(a_{H_2 O}\)(H2O for melting being supplied by aqueous fluids percolating in the source region) fail to account for a number of features of the Macusani magmas. \(a_{H_2 O}\)was internally controlled and magma generation resulted essentially from fluid-absent melting of F-muscovite combined with incipient biotite dehydration. Fluid-absent melting of F-rich muscovite occurs at higher temperatures than for pure OH-muscovite and generates a H2O-undersaturated melt. Incipient melting of biotite resulted from high heat flux and elevated temperatures (up to 800° C) in the source region. The Macusani magmas are generated as low melt fraction batches (15 vol%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arzi AA (1978) Fusion kinetics, water pressure, water diffusion and electrical conductivity in melting rock, interrelated. J Petrol 19:153–169

    Google Scholar 

  • Barberi F, Innocenti F, Mazzuoli R (1967) Contributo alla conozunza chimico-petrographica e magmatologica delle roche intrusive, vulcaniche e filoniane del Campigliese (Toscana). Mem Soc Geol It 6:643–681

    Google Scholar 

  • Barnes AE, Edwards G, McLaughlin WA, Friedman I, Joensuu O (1970) Macusanite occurrence, age and composition, Macusani, Peru. Bull Geol Soc Am 81:1539–1546

    Google Scholar 

  • Bénard F, Moutou P, Pichavant M (1985) Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. J Geol 93:271–291

    Google Scholar 

  • Beran A (1986) A model of water allocation in alkali feldspar, derived from infrared-spectroscopic investigations. Phys Chem Mineral 13:306–310

    Google Scholar 

  • Briqueu L, Lancelot JR (1977) Nouvelles données analytiques et essai d'interpretation des données du strontium des laves calcoalkalines Plio-Quaternaires du Pérou. Bull Soc Geol Fr 19:1223–1232

    Google Scholar 

  • Briqueu L, Javoy M, Lancelot JR, Tatsumoto M (1986) Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf and O isotopic ratios in the lavas of Milos and Santorinigeodynamic implications. Earth Planet Sci Lett 80:41–54

    Google Scholar 

  • Brown GC, Fyfe WS (1970) The production of granitic melts during ultrametamorphism. Contrib Mineral Petrol 28:310–318

    Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd ed. Wiley, New York, pp 71–136

    Google Scholar 

  • Burnol L (1978) Different types of leucogranites and classification of the types of mineralization associated with acid magmatism in the North-Western part of the French Massif Central. In: Stemprok M, Burnol L, Tischendorf G (eds) Metallization associated with acid magmatism. Ustredni Ustav Geologicky, Praha, pp 191–204

    Google Scholar 

  • Chayla B, Jaffrezic H, Joron JL (1973) Analyse par activation dans les neutrons épithermiques. Application à la détermination des éléments en trace dans les roches. CR Acad Sci 277:273–275

    Google Scholar 

  • Christiansen EH, Burt DM, Sheridan MF, Wilson RT (1983) The petrogenesis of topaz rhyolites from the Western United States. Contrib Mineral Petrol 83:16–30

    Google Scholar 

  • Christiansen EH, Bikun JV, Sheridan MF, Burt DM (1984) Geochemical evolution of topaz rhyolites from the Thomas Range and Spor Mountain, Utah. Am Mineral 69:223–236

    Google Scholar 

  • Clemens JD (1984) Water contents of silicic to intermediate magmas. Lithos 17:273–287

    Google Scholar 

  • Clemens JD, Wall VJ (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Can Mineral 19:111–131

    Google Scholar 

  • Clemens JD, Wall VJ (1984) Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. Contrib Mineral Petrol 88:354–371

    Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Plant Sci Lett 86:287–306

    Google Scholar 

  • Cuney M, Autran A, Burnol L, Brouand M, Dudoignon P, Feybesse JL, Gagny C, Jacquot T, Kosakevitch A, Martin P, Meunier A, Monier G, Tegyey M (1986) Résultats préliminaires apportés par le sondage GPF sur la coupole de granite albitique à topaze-lépidolite de Beauvoir (Massif Central, France). CR Acad Sci 303:569–574

    Google Scholar 

  • Dalmayrac B, Lancelot JR, Leyreloup A (1977) Two billion year granulites in the late Precambrian metamorphic basement along the southern Peruvian coast. Science 198:49–51

    Google Scholar 

  • Deniel C, Vidal P, Fernandez A, Le Fort P, Peucat JJ (1987) Isotopic study of the Manaslu granite (Himalaya, Nepal): inferences on the age and source of the Himalayan leucogranites. Contrib Mineral Petrol 96:78–92

    Google Scholar 

  • Doukhan JC, Trepied L (1985) Plastic deformation of quartz single crystals. Bull Mineral 108:97–123

    Google Scholar 

  • Dupuy C (1970) Contribution à l'étude des fractionnements géochimiques des alcalins, des alcalino-terreux et du gallium au cours des processus magmatiques. Exemple:les roches intrusives et effusives de Toscane et du Latium Septentrional (Italie). Thèse Univ Montpellier, pp 339

  • Etheridge MA, Wall VJ, Vernon RH (1983) The role of the fluid phase during regional metamorphism and deformation. J Metam Geol 1:205–226

    Google Scholar 

  • Eugster HP, Wright TL (1960) Synthetic hydrous boron micas. Prof Pap US Geol Surv 400-B:441–442

    Google Scholar 

  • Gariepy C, Allegre CJ, Xu RH (1985) The Pb-isotope geochemistry of granitoids from the Himalaya-Tibet collision zone: implications for crustal evolution. Earth Planet Sci Lett 74:220–234

    Google Scholar 

  • Goffé B, Saliot P (1977) Les associations minéralogiques des roches hyperalumineuses du Dogger de Vanoise. Leur signification dans le métamorphisme regional. Bull Soc Fr Mineral Cristallogr 100:302–309

    Google Scholar 

  • Govindaraju K, Mevelle G (1987) Fully automated dissolution and separation methods for inductively coupled plasma atomic emission spectrometry rock analysis. J Anat At Spectrom 2:615–621

    Google Scholar 

  • Govindaraju K, Mevelle G, Chouard C (1976) Automated optical emission spectrochemical bulk analysis of silicate rocks with microwave plasma excitation. Anal Chem 48:1325–1331

    Google Scholar 

  • Green TH (1976) Experimental generation of cordierite- or garnetbearing granitic liquids from a pelitic composition. Geology 4:85–88

    Google Scholar 

  • Hanson GN (1978) The application of the trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Lett 38:26–43

    Google Scholar 

  • Hawkesworth CJ, Vollmer R (1979) Crustal contamination versus enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian volcanics. Contrib Mineral Petrol 69:151–165

    Google Scholar 

  • Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res 86:10153–10192

    Google Scholar 

  • Hofmeister AM, Rossman GR (1985) A spectroscopic study of irradiation coloring of amazonite: structurally hydrous, Pb-bearing feldspar. Am Mineral 70:794–804

    Google Scholar 

  • James DE (1982) A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in Central Andean lavas. I Local geochemical variations. Earth Planet Sci Lett 57:47–62

    Google Scholar 

  • Kontak DJ (1985) The magmatic and metallogenic evolution of a craton-orogen interface: the Cordillera de Carabaya, Central Andes, SE Peru. PhD Thesis, Queen's University, pp 714

  • Lameyre J (1973) Les marques de l'eau dans les leucogranites du Massif Central Français. Bull Soc Geol Fr 7:288–295

    Google Scholar 

  • La Roche H, Stussi JM, Chauris L (1980) Les granites à deux micas hercyniens français. Essais de cartographie et de corrélations géochimiques appuyés sur une banque de données. Implications pétrologiques et métallogéniques. Sci Terre 24:5–121

    Google Scholar 

  • Le Fort P (1973) Les leucogranites à tourmaline de l'Himalaya sur l'exemple du granite du Manaslu (Népal Central). Bull Soc Geol Fr 7:555–561

    Google Scholar 

  • Le Fort P (1981) Manaslu leucogranite: a collision signature of the Himalaya. A model for its genesis and emplacement. J Geophys Res 86:10545–10568

    Google Scholar 

  • Litherland M, Annels RN, Appleton JD, Berrangé JP, Bloomfield K, Burton CCJ, Darbyshire DPF, Fletcher CJN, Hawkins MP, Klinck BA, Llanos A, Mitchell WI, O'Connor EA, Pitfield PEJ, Power G, Webb BC (1986) The geology and mineral resources of the Bolivian Precambrian shield. Overseas Mem Br Geol Surv 9:p 148

    Google Scholar 

  • Luth WC (1976) Granitic rocks. In: Bailey DK, MacDonald R (eds) The evolution of the crystalline rocks. Academic Press, NewYork, pp 335–417

    Google Scholar 

  • Martin RF, Donnay G (1972) Hydroxyl in the mantle. Am Mineral 57:554–570

    Google Scholar 

  • Masuda A, Nakamura N, Tanaka T (1973) Fine structure of mutually normalized rare-earth patterns of chondrites. Geochim Cosmochim Acta 37:239–248

    Google Scholar 

  • McCarthy TS, Groves DI (1979) The Blue Tier batholith, northeastern Australia. A cumulate-like product of fractional crystallization. Contrib Mineral Petrol 71:193–209

    Google Scholar 

  • Miller CF (1985) Are strongly peraluminous magmas derived from pelitic sedimentary sources? J Geol 93:673–689

    Google Scholar 

  • Montel JM, Weber C, Barbey P, Pichavant M (1986) Thermobarométrie du domaine anatectique du Velay (Massif Central, France) et conditions de genèse des granites tardimigmatitiques. CR Acad Sci 302:647–652

    Google Scholar 

  • Mukasa SB (1986) Common Pb isotopic composition of the Lima, Arequipa and Toquepala segments in the coastal batholith, Peru: implications for magma genesis. Geochim Cosmochim Acta 50:771–782

    Google Scholar 

  • Munksgaard NC (1984) High δ 18O and possible pre-eruptional Rb-Sr isochrons in cordierite-bearing Neogene volcanics from SE Spain. Contrib Mineral Petrol 87:351–358

    Google Scholar 

  • Noble DC, Vogel TA, Peterson PS, Landis GP, Grant NK, Jezek P, McKee EH (1984) Rare-element-enriched, S-type ash-flow tuffs containing phenocrysts of muscovite, andalusite, and sillimanite, southeastern Peru. Geology 12:35–39

    Google Scholar 

  • Pichavant M, Montel JM (1988) Petrogenesis of a two-mica ignimbrite suite: the Macusani Volcanics, SE Peru. Trans Roy Soc Edinburgh: Earth Sciences 73 (in press)

  • Pichavant M, Valencia Herrera J, Boulmier S, Briqueu L, Joron JL, Juteau M, Marin L, Michard A, Sheppard SMF, Treuil M, Venet M (1987a) The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. In: Mysen BO (ed) Magmatic processes, physicochemical principles. Geochem Soc Special Publ 1: 359–373

  • Pichavant M, Boher M, Stenger JF, Aissa M, Charoy B (1987b) Relations de phases des granites de Beauvoir entre 1 et 3 kbar en conditions de saturation en H2O. Geol Fr 2–3:77–86

    Google Scholar 

  • Pichavant M, Kontak DJ, Valencia Herrera J, Clark AH (1988) The Miocene-Pliocene Macusani Volcanics, SE Peru I. Mineralogy and magmatic evolution of a two-mica aluminosilicatebearing ignimbrite suite. Contrib Mineral Petrol 100:300–324

    Google Scholar 

  • Pichler H (1970) Italienische Vulkan-Gebiet I. Somma-Vesuv, Latium, Toscana. Sammlung Geologischer Führer Bd 51. Gebrüder Borntraeger, Berlin, pp 258

    Google Scholar 

  • Rubie DC (1986) The catalysis of mineral reactions by water and restrictions on the presence of aqueous fluid during metamorphism. Mineral Mag 50:399–415

    Google Scholar 

  • Schmidt RC (1985) High-alumina hydrothermal systems in volcanic rocks and their significance to mineral prospecting in the Carolina State Belt. US Geol Surv 1562:59

    Google Scholar 

  • Schreyer W, Werding G, Abraham K (1981) Corundum-fuchsite rocks in greenstone belts of Southern Africa: petrology, geochemistry and possible origin. J Petrol 22:191–231

    Google Scholar 

  • Sheppard SMF (1986) Igneous rocks: III. Isotopic case studies of magmatism in Africa, Eusasia and oceanic islands. In: Taylor HP, O'Neil JR, Valley JW (eds) Stable isotopes in high temperature geological processes, Mineral Soc Am Rev Mineral 16:319–371

  • Smith RL (1979) Ash-flow magmatism. In: Chapin CE, Elston WE (eds) Ash-flow Tuffs. Geol Soc Am Spe Pap 180: 5–27

  • Sparks RSJ, Marshall L (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volc Geotherm Res 29:99–124

    Google Scholar 

  • Stubican V, Roy R (1962) Boron substitution in synthetic micas and clays. Am Mineral 47:1166–1173

    Google Scholar 

  • Taylor HP, Epstein S (1962) Oxygen isotope studies on the origin of tektites. J Geophys Res 67:4485–4490

    Google Scholar 

  • Taylor HP, Turi B (1976) High 18O igenous rocks from the Tuscan magmatic province, Italy. Contrib Mineral Petrol 55:33–54

    Google Scholar 

  • Thompson AB (1982) Dehydration-melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci: 282:1567–1595

    Google Scholar 

  • Thompson AB, Algor JR (1977) Model systems for anatexis of pelitic rocks. I theory of melting reactions in the system KAlO2-NaAlO2-Al2O3-SiO2-H2O. Contrib Mineral Petrol 63:247–269

    Google Scholar 

  • Tischendorf G (1977) Geochemical and petrographic characteristics of silicic magmatic rocks associated with rare-element mineralization. In: Stemprok M, Burnol L, Tischendorf G (eds) Metallization associated with acid magmatism. Ustredni Ustav Geologicky, Praha, pp 41–98

    Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth's crust. Geol Soc Am Bull 72:175–192

    Google Scholar 

  • Valencia Herrera J, Pichavant M, Esteyries C (1984) Le volcanisme ignimbritique peralumineux Plio-Quaternaire de la région de Macusani, Pérou. CR Acad Sci 298:77–82

    Google Scholar 

  • Vidal P, Cocherie A, Le Fort P (1982) Geochemical investigation of the origin of the Manaslu leucogranite (Himalaya, Nepal). Geochim Cosmochim Acta 46:2279–2292

    Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid absent melting relations in the pelitic system. Consequences for crustal differentiation. Contrib Mineral Petrol 98:257–276

    Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granit oid genesis. Tectonophys 43:7–22

    Google Scholar 

  • Wickham SM (1987) Crustal anatexis and granite petrogenesis during low-pressure regional metamorphism: the Trois Seigneurs Massif, Pyrénées, France. J Petrol 28:127–169

    Google Scholar 

  • Wilkins RWT, Sabine W (1973) Water content of nominally anhydrous silicates. Am Mineral 58:508–516

    Google Scholar 

  • Zartman RE, Doe BR (1981) Plumbotectonics — The model. Tectonophys 75:135–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

CRPG Contribution n∘ 770

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichavant, M., Kontak, D.J., Briqueu, L. et al. The Miocene-Pliocene Macusani Volcanics, SE Peru. Contr. Mineral. and Petrol. 100, 325–338 (1988). https://doi.org/10.1007/BF00379742

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379742

Keywords

Navigation