Skip to main content
Log in

Heat and mass transfer in laminar flow between parallel porous plates

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Summary

The problem of heat transfer in a two-dimensional porous channel has been discussed by Terrill [6] for small suction at the walls. In [6] the heat transfer problem of a discontinuous change in wall temperature was solved. In the present paper the solution of Terrill for small suction at the walls is revised and the whole problem is extended to the cases of large suction and large injection at the walls. It is found that, for all values of the Reynolds number R, the limiting Nusselt number Nu increases with increasing R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ψ :

stream function

2h :

channel width

x, y :

distances measured parallel and perpendicular to the channel walls respectively

U :

velocity of fluid at x=0

V :

constant velocity of fluid at the wall

η=y/h :

nondimensional distance perpendicular to the channel walls

f(η):

function defined in equation (1)

ν :

coefficient of kinematic viscosity

R=Vh/ν :

suction Reynolds number

ρ :

density of fluid

C p :

specific heat at constant pressure

K :

thermal conductivity

T :

temperature

x=x 0 :

position where temperature of walls changes

T 0, T 1 :

temperature of walls for x<x 0, x>x 0 respectively

θ = (TT 1)/T 0T 1):

nondimensional temperature

ξ=x/h :

nondimensional distance along channel

R * = Uh/v :

channel Reynolds number

Pr = μC p/K :

Prandtl number

λ n :

eigenvalues

B n(η):

eigenfunctions

B (0)n , (η):

eigenfunctions for R=0

B (i)0 , B (ii)0 ...:

change in eigenfunctions when R≠0 and small

K n :

constants given by equation (13)

h :

heat transfer coefficient

Nu :

Nusselt number

θ m :

mean temperature

C n :

constants given by equation (18)

\(\varepsilon = \left| {\frac{1}{{R P\gamma }}} \right|\) :

perturbation parameter

B 0i (η):

perturbation approximations to B 0(η)

Q = ∂B 0/∂λ 0 :

derivative of eigenfunction with respect to eigenvalue

z :

nondimensional distance perpendicular to the channel walls

F(z):

function defined by (54)

References

  1. Prins, J. A., J. Mulder, and J. Schenk, Appl. Sci. Res. A 2 (1950) 431.

    Google Scholar 

  2. Van der Does de Bye, J. A. W. and J. Schenk, Appl. Sci. Res. A 3 (1952) 308.

    Google Scholar 

  3. Schenk, J. and H. L. Beckers, Appl. Sci. Res. A 4 (1954) 405.

    Google Scholar 

  4. Cess, R. D. and C. C. Schaffer, Appl. Sci. Res. A 8 (1959) 339.

    Google Scholar 

  5. Cess, R. D. and C. C. Schaffer, Appl. Sci. Res. A 9 (1959) 64.

    Google Scholar 

  6. Terrill, R. M., Intern. J. Heat Mass Tr. 8 (1965) 1491.

    Google Scholar 

  7. Hatton, A. P. and J. S. Turton, Intern. J. Heat Mass Tr. 5 (1962) 673.

    Google Scholar 

  8. Terrill, R. M., Aeron. Quart. XV (1964) 299.

    Google Scholar 

  9. Terrill, R. M., Aeron. Quart. XVI (1965) 323.

    Google Scholar 

  10. Berman, A. S., Appl. Phys. 24 (1953) 1232.

    Google Scholar 

  11. Whittaker, E. T. and G. N. Watson, A course of modern analysis, Cambridge University Press 1940.

  12. Rosser, J. B., Theory and application of \(\int\limits_0^Z {{\text{e}} - x^2 {\text{d}}x} {\text{ }}and{\text{ }}\int\limits_0^Z {{\text{e}} - p^2 y^2 } {\text{ d}}y{\text{ }}\int\limits_0^y {{\text{e}} - x^2 {\text{d}}x} \), OSRD 5861 (1945), Office of Scientific Research and Development.

  13. Bateman, H., Higher transcendental functions, Volume II, Bateman Manuscript Project, McGraw-Hill Publ. Co., New York 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrill, R.M., Walker, G. Heat and mass transfer in laminar flow between parallel porous plates. Appl. Sci. Res. 18, 193–220 (1968). https://doi.org/10.1007/BF00382347

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382347

Keywords

Navigation