Skip to main content
Log in

Measurement of the concentration diffusion coefficient for He-Ar and Ne-Kr by a two bulb method

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Summary

A two bulb glass apparatus was used to measure the concentration diffusion coefficient of the binary gas systems He-Ar and Ne-Kr. The coefficients were determined for equimolar mixtures at temperatures between 0°C and 70°C. The diffusion was followed as a function of time by withdrawing samples and analyzing them in a specially designed thermal conductivity analyzer with high accuracy. The diffusion coefficients agree with earlier reported experimental values and with those obtained on the basis of the Chapman-Enskog theory in conjunction with the modified Buckingham exp-six and Lennard-Jones (12-6) intermolecular potentials. The smoothed values were used to predict viscosity and thermal conductivity of these mixtures as a function of composition and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loschmidt, J., Wien. Ber. 61 (1869) 367; ibid. 62 (1870) 468.

    Google Scholar 

  2. Stefans, J., Wien. Ber. (II) 68 (1874) 385; ibid. 98 (1889) 1418; Ann. Physik 41 (3) (1890) 725.

    Google Scholar 

  3. Hertz, W. and G. E. Harrison, Proc. Roy. Soc. (London) A 169 (1939) 573.

    Google Scholar 

  4. Ney, E. P. and F. C. Armistead, Phys. Rev. 71 (1947) 41.

    Google Scholar 

  5. Saxena, S. C. and E. A. Mason, Mol. Phys. 2 (1959) 264; ibid. 379.

    Google Scholar 

  6. McCarty, K. P. and E. A. Mason, Phys. Fluids 3 (1960) 908; ibid. 4 (1961) 1504.

    Google Scholar 

  7. Waldmann, L., Naturwiss. 32 (1944) 223; Z. Naturforsch. 1 (1946) 59.

    Google Scholar 

  8. Klibanova, T. M., V. V. Pomerantsw and D. A. Frank-Kamenetskii, J. Tech. Phys. (U.S.S.R.) 12 (1942) 14.

    Google Scholar 

  9. Westenberg, A. A. and G. Frazier, J. Chem. Phys. 36 (1962) 3499.

    Google Scholar 

  10. Ember, G., J. R. Ferron, and K. Wohel, J. Chem. Phys. 37 (1962) 891; Am. Inst. Chem. Eng. Journal 10 (1964) 68.

    Google Scholar 

  11. Winn, E. B., Phys. Rev. 80 (1950) 1024.

    Article  Google Scholar 

  12. Muller, C. R. and R. W. Cahill, J. Chem. Phys. 40 (1964) 651.

    Google Scholar 

  13. Paul, R., Phys. Fluids 3 (1960) 905.

    Google Scholar 

  14. Saxena, S. C. and B. P. Mathur, Rev. Mod. Phys. 37 (1965) 316.

    Article  Google Scholar 

  15. Saxena, S. C. and B. P. Mathur, Rev. Mod. Phys. 38 (1966) 380.

    Article  Google Scholar 

  16. Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, New York 1964.

    Google Scholar 

  17. Muckenfuss, C. and C. F. Curtiss, J. Chem. Phys. 29 (1958) 1273. See also

    Google Scholar 

  18. Mason, E. A. and S. C. Saxena, J. Chem. Phys. 31 (1959) 511.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathur, B.P., Saxena, S.C. Measurement of the concentration diffusion coefficient for He-Ar and Ne-Kr by a two bulb method. Appl. Sci. Res. 18, 325–335 (1968). https://doi.org/10.1007/BF00382357

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382357

Keywords

Navigation