Skip to main content
Log in

Nitratabhängige nichtcyclische Photophosphorylierung bei Ankistrodesmus braunii in Abwesenheit von CO2 und O2

Nitrate-dependent noncyclic photophosphorylation in Ankistrodesmus braunii in the absence of CO2 and O2

  • Published:
Planta Aims and scope Submit manuscript

Summary

Manometric measurements show that oxygen evolution proceeds in synchronised cells of Ankistrodesmus braunii even in an atmosphere of pure nitrogen. In this case the slow oxygen evolution is dependent on the presence of nitrate (Table 1). Light saturation is found at a low light intensity at pH 5.6, at a higher light intensity at pH 8.0 (Fig. 1). The light saturation curves are in good agreement with those of 32P-labelling in Ankistrodesmus under the same conditions (Fig. 2).

DCMU inhibition in N2 of both O2-evolution and 32P-labelling begins only at a DCMU concentration of 5×10-7M or more. Complete inhibition of O2-evolution is reached only at 10-5M (Fig.3). In 32P-labelling a variable percentage is still left uninhibited at 10-5 M DCMU (Fig. 4, Table 2), which is at least partly due to cyclic photophsphorylation. Nitrate starvation for several hours causes a considerable decrease in O2-evolution and also in the sensitivity to those high concentrations of DCMU (Fig. 5), but it leads to a sensitivity to antimycin A not observed under normal conditions (Table 3). The effects of nitrate starvation thus become comparable to those of far-red light, under which noncyclic electron transport is slow or completely prevented.

The inhibition by DCMU of electron transport in photosystem II is also estimated by measuring the increase in fluorescence at 684 nm in air containing additional CO2. This fluorescence is saturated only at 10-5M DCMU and shows that a certain percentage of photosystem II remains uninhibited at 5×10-7M (Fig. 6), a concentration found to be almost ineffective in inhibiting O2-evolution and 32P-labelling in an N2-atmosphere.

The results indicate that in synchronised cells of Ankistrodesmus noncyclic electron flow and noncyclic photophosphorylation can proceed in an atmosphere of pure nitrogen if nitrate is available as the electron acceptor. In this case noncyclic photophosphorylation, inspite of its low rates, still dominates over cyclic photphosphorylation. At low pH, when nitrate reduction is slow, cyclic photophosphorylation accounts for a greater part of the total phosphorylation than at high pH. Thus in the absence of CO2 and O2 cyclic photophosphorylation can be regarded as the main process of ATP formation only after nitrate starvation, in far-red light or in the presence of high concentrations of DCMU.

Inhibition by DCMU, though very efficient under conditions of high photosynthetic activity, becomes rate-limiting only if the electron transport is so far reduced by DCMU that the remaining rate is of the same order as the low rate of the control or less. Therefore high concentrations of DCMU are required for the inhibition of low rates of noncyclic photophosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Aach, H. G.: Über Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstärken und Nitratmengen. Arch. Mikrobiol. 17, 213–246 (1952)

    Google Scholar 

  • Bonaventura, C., Myers, J.: Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim. biophys. Acta (Amst.) 189, 366–383 (1969).

    Google Scholar 

  • Bornefeld, T.: Diss. Würzburg 1970.

  • Delosme, R., Joliot, P., Lavorel, J.: Sur la complémentarité de la fluorescence et de l'émission d'oxygène pendant la période d'induction de la photosynthèse. C. R. Acad. Sci. (Paris) 249, 1409–1411 (1959).

    Google Scholar 

  • Duysens, L. N. M., Sweers, H. E.: Mechanism of two photochemical reactions in algae as studied by means of fluorescence. Microalgae and photosynthetic bacteria, p. 353–372. Tokyo: Univ. Tokyo Press 1963.

    Google Scholar 

  • Forti, G., Parisi, B.: Evidence for the occurrence of cyclic photophosphorylation in vivo. Biochim. Biophys. Acta (Amst.) 71, 1–6 (1963).

    Google Scholar 

  • Gimmler, H., Neimanis, S., Eilmann, I., Urbach, W.: Photophosphorylation and photosynthetic 14CO2-fixation in vivo. II. Comparison of cyclic and noncyclic photophosphorylation with photosynthetic 14CO2-fixation during the synchronous life cycle of Ankistrodesmus braunii. Z. Pflanzenphysiol. 64, 358–366 (1971).

    Google Scholar 

  • Grant, B. R., Turner, I. M.: Light-stimulated nitrate and nitrite assimilation in several species of algae. Comp. Biochem. Physiol. 29, 995–1004 (1969).

    Google Scholar 

  • Heber, U.: Conformational changes of chloroplasts induced by illumination of leaves in vivo. Biochim. biophys. Acta (Amst.) 180, 302–319 (1969).

    Google Scholar 

  • —, French, C. S.: Effects of oxygen on the electron transport chain of photosynthesis. Planta (Berl.) 79, 99–112 (1968).

    Google Scholar 

  • Kaden, J.: Diss. Würzburg 1965.

  • Kandler, O., Tanner, W.: Die Photoassimilation von Glucose als Indikator für die Lichtphosphorylierung in vivo. Ber. dtsch. bot. Ges. 79, (48)-(57) (1966).

    Google Scholar 

  • Kessler, E.: Untersuchungen zum Problem der photochemischen Nitratreduktion in Grünalgen. Planta (Berl.) 49, 505–523 (1957).

    Google Scholar 

  • —: Nitrate assimilation by plants. Ann. Rev. Plant Physiol. 15, 57–72 (1964).

    Google Scholar 

  • Morris, I., Ahmed, J.: The effect of light on nitrate and nitrite assimilation by Chlorella and Ankistrodesmus. Physiol. Plantarum (Cph.) 22, 1166–1174 (1969).

    Google Scholar 

  • Munday, J. C., Govindjee: Fluorescence transients in Chlorella: Effects of supplementary light, anaerobiosis, and methyl viologen. In: H. Metzner, Progress in photosynthesis research, p. 913–922. Tübingen 1969.

  • Paneque, A., Aparicio, P. J., Cárdenas, J., Vega, J. Ma., Losada, M.: Nitrate as a Hill reagent in a reconstituted chloroplast system. FEBS Letters 3, 57–59 (1969).

    Google Scholar 

  • Paschinger, H.: Photochemical oxygen evolution by Chlorella fusca in glucose. Arch. Mikrobiol. 67, 243–250 (1969).

    Google Scholar 

  • Pirson, A., Ruppel, H. G.: Über die Induktion einer Teilungshemmung in synchronen Kulturen von Chlorella. Arch. Mikrobiol. 42, 299–309 (1962).

    Google Scholar 

  • Rensen, J. J. S. van: Polyphosphate formation in Scendesmus in relation to photosynthesis. In: H. Metzner, Progress in photosynthesis research, p. 1769–1776. Tübingen 1969.

  • Ullrich, W. R.: Zur Wirkung von Sauerstoff auf die 32P-Markierung von Polyphosphaten und organischen Phosphaten bei Ankistrodesmus braunii im Licht. Planta (Berl.) 90, 272–285 (1970).

    Google Scholar 

  • —, Simonis, W.: Die Bildung von Polyphosphaten bei Ankistrodesmus braunii durch Photophosphorylierung im Rotlicht von 683 und 712 nm unter Stickstoffatmosphäre. Planta (Berl.) 84, 358–367 (1969).

    Google Scholar 

  • Ullrich-Eberius, C. I., Simonis, W.: Der Einfluß von Natrium-und Kaliumionen auf die Photophosphorylierung bei Ankistrodesmus braunii. Planta (Berl.) 92, 358–373 (1970).

    Google Scholar 

  • Urbach, W., Gimmler, H.: Photophosphorylierung und photosynthetische 14CO2-Fixierung in vivo. I. Vergleich von cyclischer und nichteyclischer Photophosphorylierung mit der photosynthetischen 14CO2-Fixierung. Z. Pflanzenphysiol. 62, 276–286 (1970).

    Google Scholar 

  • —, Simonis, W.: Inhibitor studies on the photophosphorylation in vivo by unicellular algae (Ankistrodesmus) with antimycin A, HO QNO, salicylaldoxime and DCMU. Biochem. biophys. Res. Commun. 17, 39–45 (1964).

    Google Scholar 

  • ——: Further evidence for the existence of cyclic and noncyclic photophosphorylation in vivo by means of desaspidin and DCMU. Z. Naturforsch. 22b, 537–540 (1967).

    Google Scholar 

  • Warburg, O., Geissler, A. W., Lorenz, S.: CO2-Drucke über Bicarbonat-Carbonatgemischen. Z. Naturforsch. 16b, 283 (1961).

    Google Scholar 

  • Wiessner, W.: The non-photosynthetic, light-dependent metabolism in Chlamydobotrys (Volvocales). Plant Physiol. 38, (28) (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, W.R. Nitratabhängige nichtcyclische Photophosphorylierung bei Ankistrodesmus braunii in Abwesenheit von CO2 und O2 . Planta 100, 18–30 (1971). https://doi.org/10.1007/BF00386884

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386884

Navigation