Skip to main content
Log in

Sucrose uptake by cotyledons of Ricinus communis L.: Characteristics, mechanism, and regulation

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cotyledons of Ricinus communis take up externally supplied sucrose at a rate of up to 150 μmol/h/g fresh weight, which is very high when compared with other sugar transport systems of higher plants. The uptake of sucrose is catalysed with a K m of 25 mmol l−1; at high sucrose concentrations a linear (diffusion) component becomes obvious. Other mono-, di-, or trisaccharides do not compete for sucrose uptake. Sucrose is accumulated by the cotyledons up to 100-fold, whereby most of the transported, externally supplied sucrose mixes with sucrose present in the tissue. At low sucrose concentrations, however; a small unexchangeable internal pool of sucrose becomes evident. Poisons of energy metabolism such as FCCP inhibit uptake and accumulation of sucrose. The transport of sucrose induces an increase of respiration, from which an energy requirement of 1.4 ATP/sucrose taken up can be calculated. Sucrose is taken up together with protons at an apparent stoichiometry of 0.3 protons/sucrose. Other sugars do not cause proton uptake. The K m for sucrose induced proton uptake is 5 mmol l−1; the discrepancy to the K m for sucrose uptake as well as the low proton: sucrose stoichiometry might possibly be caused by a large contribution of diffusion barriers. The estimated proton-motive potential difference would by sufficient to explain an electrogenic sucrose accumulation. The rate of uptake of sucrose is subject to feedback inhibition by internal sucrose. It is also regulated during growth of the seedlings since it develops rapidly during the first days of germination and declines again after the 4th day of germination, though no substantial increase of passive permeability resistance was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMO:

dimethyloxazolidinedione

FCCP:

trifluoromethoxy (carbonyl-cyanide) phenylhydrazon

fr. wt.:

fresh weight

References

  • Bowen, J.E.: Sugar transport in immature internodal tissues of sugar cane I. Mechanism and kinetics of accumulation. Plant Physiol. 49, 82–86 (1972)

    Google Scholar 

  • Butler, T.C., Waddell, W.J., Poole, D.T.: Intracellular pH based on the distribution of weak electrolytes. Fed. Proc. 26, 1327–1330 (1967)

    PubMed  Google Scholar 

  • Carlier, G.: Absorption et métabolisme, par les tissus foliaires de Pelargonium zonale L. du glucose-[14C] fourni a differentes concentrations. Physiol. Vég 8, 315–325 (1970)

    Google Scholar 

  • Cohen, G.N., Monod, J.: Bacterial permeases, Bacteriol. Revs. 21, 169–194 (1957)

    Google Scholar 

  • Crabeel, M., Grenson, M.: Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae. Eur. J. Biochem. 14, 197–204 (1970)

    PubMed  Google Scholar 

  • Deak, T., Kotyk, A.: Uphill transport of monosaccharides in Candida beverwijkii. Folia Microbiol. 13, 205–211 (1968)

    Google Scholar 

  • Decker, M., Tanner, W.: Respiratory increase and active hexose uptake of Chlorella vulgaris. Biochim, Biophys. Acta 266, 661–669 (1972)

    Google Scholar 

  • Ehwald, R., Sammler, P., Göring, H.: Die Bedeutung der Diffusion im “Freien Raum” für die Konzentrationsabhängigkeit der Aufnahme von Zuckern und Ionen durch pflanzliche Gewebe. Biochem. Physiol. Pflanzen 164, 596–613 (1973)

    Google Scholar 

  • Grant, B.R., Beevers, H.: Absorption of sugars by plant tissues. Plant Physiol. 39, 78–85 (1964)

    Google Scholar 

  • Haaß, D., Tanner, W.: Regulation of hexose transport in Chlorella vulgaris. Characteristics of induction and turnover. Plant. Physiol. 53, 14–20 (1974)

    Google Scholar 

  • Hancock, J.G.: Properties and formation of the squash high affinity glucose transport system. Can. J. Bot. 48, 1515–1520 (1970)

    Google Scholar 

  • Heath, O.V.S.: The physiological aspects of photosynthesis. Stanford: University Press 1969

    Google Scholar 

  • Heinz, E., Geck, P., Pietrzyk, C.: Driving forces of amino acid transport in animal cells. Ann. N. Y. Acad. Sci. 264, 428–441 (1975)

    PubMed  Google Scholar 

  • Heinz, E., Walsh, P.M.: Exchange diffusion, transport, and intracellular levels of amino acids in Ehrlich carcinoma cells. J. Biol. Chem. 233, 1488–1493 (1958)

    PubMed  Google Scholar 

  • Hill, A.V.: The diffusion of oxygen and lactic acid through tissues. Proc. Roy. Soc. B. 104, 39–96 (1929)

    Google Scholar 

  • Humphreys, T.E.: Sucrose transport at the tonoplast. Phytochemistry 12, 1211–1219 (1973)

    Article  Google Scholar 

  • Kashket, E.R., Wilson, T.H.: Proton-coupled accumulation of galactoside in Streptococcus lactis 7962. Proc. Natl. Acad. Sci. USA, 70, 2866–2869 (1973)

    PubMed  Google Scholar 

  • Kepes, A.: The β-galactoside permease of Escherichia coli. J. Membrane Biol. 4, 87–112 (1972)

    Google Scholar 

  • Komor, E.: Proton coupled hexose transport in Chlorella vulgaris. FEBS Letters 38, 16–18 (1973)

    Article  PubMed  Google Scholar 

  • Komor, E., Tanner, W.: Characterization of the active hexose transport system of Chlorella vulgaris. Biochim. Biophys. Acta 241, 170–179 (1971)

    PubMed  Google Scholar 

  • Komor, E., Tanner, W.: The determination of the membrane potential of Chlorella vulgaris. Evidence for electrogenic sugar transport. Eur. J. Biochem. 70, 197–204 (1976)

    PubMed  Google Scholar 

  • Komor, E., Haaß, D., Tanner, W.: Unusual features of the active hexose uptake system of Chlorella vulgaris. Biochim. Biophys. Acta 266, 649–660 (1972)

    Article  PubMed  Google Scholar 

  • Komor, E., Haaß, D., Komor, B., Tanner, W.: The active hexose-uptake system of Chlorella vulgaris. K m -values for 6-deoxyglucose influx and efflux and their contribution to sugar accumulation. Eur. J. Biochem. 39, 193–200 (1973)

    PubMed  Google Scholar 

  • Komor, E., Rotter, M., Tanner, W.: A proton-cotransport system in a higher plant: Sucrose transport in Ricinus communis. Plant. Sci. Letters 9, 153–162 (1977)

    Article  Google Scholar 

  • Kriedemann, P., Beevers, H.: Sugar uptake and translocation in the castor bean seedling I. Characteristics of transfer in intact and excised seedlings. Plant Physiol. 42, 161–173 1967a

    Google Scholar 

  • Kriedemann, P., Beevers, H.: Sugar uptake and translocation in the castor bean seedling. II. Sugar transformations during uptake. Plant Physiol. 42, 174–180, 1967b

    Google Scholar 

  • Kumm, P.: Zur Anatomie einiger Keimblätter. Inaug. Diss. Breslau, 1889

  • Linask, J., Laties, G.G.: Multiphasic absorption of glucose and 3-0-methyglucose by aged potato slices. Plant Physiol. 51, 289–294

  • Lüttge, U., Schnepf, E.: Organic substances, in Transport in Plants II Part B, eds. U. Lüttge and M.G. Pitman, Encycl. of plant physiology, New series, Berlin-Heidelberg-New York: Springer 1976, pp. 244–277

    Google Scholar 

  • Malek, F., Baker, D.A.: Proton cotransport of sugars in phloem loading. Planta 135, 297–299 (1977)

    Google Scholar 

  • Mareztki, A., Thom, M.: The existence of two membrane transport systems for glucose in suspensions of sugarcance cells. Biochem. Biophys, Res. Commun. 47, 44–50 (1972)

    Google Scholar 

  • Mason, T.G., Maskell, E.J.: Studies on the transport of carbohydrates in the cotton plant. I. A study of diurnal variation in the carbohydrates of leaf, bark and wood, and of the effects or ringing. Ann. Bot. 42, 189–253 (1928)

    Google Scholar 

  • Racusen, R.H., Galston, A.W.: Electrical evidence for rhythmic changes of cotransport of sucrose and hydrogen ions in Samanea pulvini. Planta 135, 57–62 (1977)

    Google Scholar 

  • Robbie, J.P., Wilson, T.H.: Transmembrane effects of β-galactosides on thiomethyl-β-galactoside transport in Escherichia coli. Biochim. Biophys. Acta 173, 234–244 (1969)

    PubMed  Google Scholar 

  • Sacher, J.A.: The regulation of sugar uptake and accumulation in bean pod tissue. Plant Physiol. 41, 181–189 (1966)

    Google Scholar 

  • Schönherr, J.: Water permeability of isolated cuticular membranes: The effect of pH and cations on diffusion, hydrodynamic permeability and size of polar pores in the cutin matrix. Planta (Berl.) 128, 113–126 (1976)

    Google Scholar 

  • Schultz, S.G., Curran, P.F.: Coupled transport of sodium and organic solutes. Physiol. Revs. 50, 637–718 (1970)

    Google Scholar 

  • Seaston, A., Inkson, C., Eddy, A.A.: The absorption of protons with specific amino acids and carbohydrates by yeast. Biochem. J. 134, 1031–1043 (1973)

    PubMed  Google Scholar 

  • Slaymann, C.L., Slayman, C.W.: Depolarization of the plasma membrane of Neurospora during active transport of glucose: Evidence for a proton-dependent cotransport system. Proc. Natl. Acad. Sci. USA 71, 1935–1939 (1974)

    PubMed  Google Scholar 

  • Steveninck, R.F.M. Van: The “washing” or “aging” phenomenon in plant tissues. Ann. Rev. Plant Physiol. 26, 237–258 (1975)

    Article  Google Scholar 

  • Turkina, M.V., Sokolova, S.V.: A study on the membrane transfer of sucrose in the plant tissue. Fiziol. Rast. 19, 912–919 (1972)

    Google Scholar 

  • West, I., Mitchell, P.: Proton-coupled galactoside translocation in non-metabolizing Escherichia coli. J. Bioenergetics 3, 445–462 (1972)

    Google Scholar 

  • Winne, D.: Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim. Biophys. Acta 298, 27–31 (1973)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komor, E. Sucrose uptake by cotyledons of Ricinus communis L.: Characteristics, mechanism, and regulation. Planta 137, 119–131 (1977). https://doi.org/10.1007/BF00387548

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00387548

Key words

Navigation