Skip to main content
Log in

Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: Observations and a model

  • Published:
Planta Aims and scope Submit manuscript

Summary

Measurements of transpiration, leaf water content, and flux of water in a cotton plant exhibiting sustained oscillations, in stomatal conductance are presented, and a model of the mechanism causing this behaviour is developed. The dynamic elements, of the model are capacitors—representing the change of water content with water potential in mesophyll, subsidiary and guard cells—interconnected by resistances representing flow paths in the plant. Increase of water potential in guard cells causes an increase in stomatal conductance. Increase of water potential in the subsidiary cells has the opposite effect and provides the positive feed-back which can cause stomatal conductance to oscillate. The oscillations are shown to have many of the characteristics of free-running oscillations in real plants. The behaviour of the model has been examined, using an analogue computer, with constraints and perturbations representing some of those which could be applied to real plants in physiological experiments. Aspects of behaviour which have been simulated are (a) opening and closing of stomata under the influence of changes in illumination, (b) transient responses due to step changes in potential transpiration, root permeability and potential of water surrounding the roots, (c) the influence of these factors on the occurrence and shape of spontaneous oscillations, and (d) modulation of sustained oscillations due to a circadian rhythm in the permeability of roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, N. E., Hertz, C. H., Rufelt, H.: A new fast recording hygrometer for plant transpiration measurements. Physiol. Plantarum (Cph.) 7, 753–767 (1954).

    Google Scholar 

  • Apel, P.: Über rhythmisch verlaufende Änderungen in der CO2-Aufnahme von Blättern. Ber. dtsch. bot. Ges. 80, 3–9 (1967).

    Google Scholar 

  • Aubert, B., Čatský, J.: The onset of photosynthetic CO2 influx in banana leaf segments as related to stomatal diffusion resistance at different air humidities. Photosynthetica 4, 254–256 (1970).

    Google Scholar 

  • Barrs, H. D.: Cyclic variations in stomatal aperture, transpiration, and leaf water potential under constant environmental conditions. Ann. Rev. Plant Physiol. 22, 223–236 (1971).

    Google Scholar 

  • Barrs, H. D., Klepper, B.: Cyclic variations in plant properties under constant environmental conditions. Physiol. Plantarum (Cph.) 21, 711–730 (1968).

    Google Scholar 

  • Boyer, J. S.: Resistances to water transport in soybean, bean and sunflower. Crop. Sci. 11, 403–407 (1971).

    Google Scholar 

  • Collins, J. C.: Factors affecting osmotic potential: Plants. In: Respiration and circulation, p. 721–724, Altman, P. L., Dittmer, D. S., eds. Bethesda, Md.: Fed. Amer. Soc. Exp. Biol. 1971.

    Google Scholar 

  • Cowan, I. R.: An electrical analogue of evaporation from, and flow of water in plants. Planta (Berl.) 106, 221–226 (1972).

    Google Scholar 

  • Cowan, I. R., Milthorpe, F. L.: Permeability to water: Plant structures. In: Respiration and circulation, p. 705–709, Altman, P. L., Dittmer, D. S., eds. Bethesda, Md.: Fed. Amer. Soc. Exp. Biol. 1971.

    Google Scholar 

  • Cowan, I. R., Troughton, J. H.: The relative role of stomata in transpiration and assimilation. Planta (Berl.) 97, 325–336 (1971).

    Google Scholar 

  • Cox, E. F.: Cyclic changes in transpiration of sunflower leaves in a steady environment. J. exp. Bot. 19, 167–175 (1968).

    Google Scholar 

  • Darwin, F.: Observations on stomata. Phil. Trans. B 190, 531–621 (1898).

    Google Scholar 

  • Ehrler, W. L., Nakayama, F. S., Bavel, C. H. M. van: Cyclic changes in water balance and transpiration of cotton leaves in a steady environment. Physiol. Plantarum (Cph.) 18, 766–775 (1965).

    Google Scholar 

  • Florell, C., Rufelt, H.: Transpiration of wheat plants cultivated under different environmental conditions. Physiol. Plantarum (Cph.) 13, 482–486 (1960).

    Google Scholar 

  • Gradmann, H.: Untersuchungen über die Wasserverhältnisse des Bodens als Grundlage des Pflanzenwachstums. Jahrb. wiss. Bot. 69, 1–100 (1928).

    Google Scholar 

  • Harris, D. G.: Water vapour diffusion resistance of transpiring cotton plants as influenced by measured parameters of the environment. Doct. dissert., Univ. of Georgia, Athens (1968).

  • Heath, O. V. S.: An experimental investigation of the mechanism of stomatal movement, with some preliminary observations on the response of guard cells to shock. New Phytologist 37, 385–395 (1938).

    Google Scholar 

  • Honert, T. H. van den: Water transport in plants as a catenary process. Disc. Faraday Soc. 3, 146–153 (1948).

    Google Scholar 

  • Hopmans, P. A. M.: Types of stomatal cycling and their water relations in bean leaves. Z. Pflanzenphysiol. 60, 242–254 (1969).

    Google Scholar 

  • Hopmans, P. A. M.: Rhythms in stomatal opening of bean leaves. Meded. Landbouwhoogeschool Wageningen 71, No 3 (1971).

    Google Scholar 

  • Howe, G. F.: Time course of photosynthetic rhythms in Phaseolus vulgaris L. as related to changes in degree of stomatal opening. Ohio J. Sci. 64, 378–384 (1964).

    Google Scholar 

  • Hsiao, T. C., Acevedo, E., Henderson, D. W.: Maize leaf elongation: continuous measurements and close dependence on plant water status. Science 168, 590–591 (1970).

    Google Scholar 

  • Humble, G. D., Raschke, K.: Stomatal opening quantitatively related to potassium transport. Evidence from electron probe analysis. Plant. Physiol 48, 447–453 (1971).

    Google Scholar 

  • Jensen, R. D., Taylor, S. A., Wiebe, H. H.: Negative transport and resistance to flow through plants. Plant Physiol. 36, 633–638 (1961).

    Google Scholar 

  • Kanemasu, E. T., Tanner, C. B.: Stomatal diffusion resistance of snap beans. II. Effects of light. Plant Physiol. 44, 1542–1546 (1969).

    Google Scholar 

  • Karmanov, V. G., Meleshchenko, S. N., Savin, V. N.: Character of change in impedance of the plant leaf with an auto-oscillatory mode of water metabolism. Biofizika 10, 155–160 (1965).

    Google Scholar 

  • Karmanov, V. G., Meleshchenko S. N., Savin, V. N.: Study of the dynamics of the water metabolism of the plant and construction of an electrical analogue of the system of water exchange. Biofizika 11, 147–155 (1966).

    PubMed  Google Scholar 

  • Karmanov, V. G., Savin, V. N.: On the auto-oscillatory nature of water metabolism. Dokl. Akad. Nauk SSSR 154, 16–19 (1964).

    Google Scholar 

  • Kriedemann, P. E.: Photosynthesis and transpiration as a function of gaseous diffusive resistance in orange leaves. Physiol. Plantarum (Cph.) 24, 218–225 (1971).

    Google Scholar 

  • Kuiper, P. J. C.: The effects of environmental factors on the transpiration of leaves, with special reference to stomatal light response. Meded. Landbouwhoogeschool Wageningen 61, No 7 (1961).

    Google Scholar 

  • Lang, A. R. G., Klepper, B., Cumming, M. J.: Leaf water balance during oscillation of stomatal aperture. Plant. Physiol. 44, 826–830 (1969).

    Google Scholar 

  • Meister, A., Apel, P.: Ein Modell für die Funktion der Schließzellenbewegungen. Studia Biophys. 11, 125–130 (1968).

    Google Scholar 

  • Meleshchenko, S. N., Karmanov, V. G.: Mathematical model of the water metabolism of the plant with reference to the mechanism of positive feedback. Biofizika 11, 731–733 (1966).

    PubMed  Google Scholar 

  • Milthorpe, F. L., Penman, H. L.: The diffusive conductivity of wheat leaves. J. exp. Bot. 18, 422–457 (1967).

    Google Scholar 

  • Milthorpe, F. L., Spencer, E. J.: Experimental studies of the factors controlling transpiration. III. The interrelations between transpiration rate, stomatal movement, and leaf water content. J. exp. Bot. 8, 413–437 (1957).

    Google Scholar 

  • Philip, J. R.: The osmotic cell, solute diffusibility, and the plant water economy. Plant Physiol. 33, 264–271 (1958a).

    Google Scholar 

  • Philip, J. R.: Propagation of turgor and other properties through cell aggregations. Plant Physiol. 33, 271–274 (1958b).

    Google Scholar 

  • Philip, J. R.: Plant water relations: some physical aspects. Ann. Rev. Plant Physiol. 17, 245–268 (1966).

    Google Scholar 

  • Raschke, K.: Zur Steuerung der Transpiration durch die Photosynthese. Ber. dtsch. bot. Ges. 80, 138–144 (1967).

    Google Scholar 

  • Raschke, K.: Stomatal responses to pressure changes and interruptions in the water supply of detached leaves of Zea mays L. Plant Physiol. 45, 415–423 (1970).

    Google Scholar 

  • Scarth, G. W., Loewy, A., Shaw, M.: Use of the infrared total absorption method for estimating the time course of photosynthesis and transpiration. Canad. J. Res. 26, 94–107 (1948).

    Google Scholar 

  • Skidmore, E. L., Stone, J. F.: Physiological role in regulating transpiration rate of the cotton plant. Agron. J. 56, 405–410 (1964).

    Google Scholar 

  • Stålfelt, M. G.: Pulsierende Blattgewebe. Planta (Berl.) 7, 720–734 (1929a).

    Google Scholar 

  • Stålfelt, M. G.: Die Abhängigkeit der Spaltöffnungsreaktion von der Wasserbilanz. Planta (Berl.) 8, 287–340 (1929b).

    Google Scholar 

  • Stålfelt, M. G.: Die stomatäre Transpiration und die Physiologie der Spaltöffnungen. In: Handbuch der Pflanzenphysiologie, Bd.III, S. 351–426. Berlin-Göttingen-Heidelberg: Springer 1956.

    Google Scholar 

  • Teoh, C. T., Palmer, J. H.: Nonsynchronized oscillations, in stomatal resistance among sclerophylls of Eucalyptus umbra. Plant Physiol. 47, 409–411 (1971).

    Google Scholar 

  • Troughton, J. H.: Plant water status and carbon dioxide exchange of cotton leaves. Aust. J. biol. Sci. 22, 289–302 (1969).

    Google Scholar 

  • Troughton, J. H., Cowan, I. R.: Carbon dioxide exchange in cotton: some anomalous fluctuations. Science 161, 281–283 (1968).

    PubMed  Google Scholar 

  • Weatherley, P. E.: Some aspects of water relations. In: Advances in botanical research, vol. 3, p. 171–206 Preston, R. D., ed. London-New York: Acad. Press 1970.

    Google Scholar 

  • Went, F. W.: Plant growth under controlled conditions. III. Correlation between various physiological processes and growth in the tomato plant. Amer. J. Bot. 31, 597–618 (1944).

    Google Scholar 

  • Woo, K. B., Boersma, L., Stone, L. N.: Dynamic simulation model of the transpiration process. Water Resources Res. 2, 85–97 (1966).

    Google Scholar 

  • Woo, K. B., Stone, L. N., Boersma, L.: A conceptual model of stomatal control mechanisms. Water Resources Res. 2, 71–84 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowan, I.R. Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: Observations and a model. Planta 106, 185–219 (1972). https://doi.org/10.1007/BF00388098

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388098

Keywords

Navigation