Skip to main content
Log in

Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of long Island Sound, USA

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Relative rates of the anaerobic decomposition of organic matter in the upper 10 cm of sediment from two stations in central Long Island Sound, USA, were compared. Sediment samples from discrete depth intervas were incubated anoxically and changes in SO =4 , NH +4 , bacterial numbers, extractable adenosine triphosphate (ATP), organic matter, and organic carbon were measured as a function of time and temperature. At both stations (∼15 and ∼34 m water-depths, respectively), the calculated rates of SO =4 reduction and NH +4 production decreased exponentially (approximately) with depth below the sediment-water interface. Over the same depth interval, ATP concentrations dropped by a factor of ∼6 to 7 and bacterial numbers were lower by a factor of 2 to 3. These decreases in SO =4 reduction, NH +4 production, bacterial numbers, and ATP, reflect a change in the physiological state of microbial populations with depth in the sediment and are consistent with the conclusions that the quantity of easily utilizable organic matter changes rapidly below the sediment surface and that food limitation controls the basic depth distribution of microbial activity. The average rates of SO =4 reduction, ∼29 to 39 mM year-1 (22°C), in the top 10 cm are similar at both stations studied here, as well as at an additional station from a previous study. In contrast, average NH +4 production differs by a factor of ∼2 at the two stations, reflecting differences in the C:N ratio of the organic matter supplied to the sediment surface and differences in particle reworking by macrofauna at each site. The apparent activation energy of SO =4 reduction was 19±1 kcal mole-1 and that of NH +4 production, 18±3 kcal mole-1. The overall quantity of carbon required to support the calculated average SO =4 reduction rate in the top 10 cm is 23 g C m-2 year-1 and represents ∼36% of all the carbon available to the benthos annually and ∼11% of the net primary production in the water column. Directly measured fluxes of NH +4 from sediments to overlying water at both stations agree well with those predicted from production rates obtained by the incubation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abd-el-Malek, Y. and Rizk, S. G.: Bacterial sulphate reduction and the development of alkalinity, I, II, III. J. appl. Bact. 26, 7–13; 14–19; 20–26 (1963)

    Google Scholar 

  • Aller, R. C.: The influence of macrobenthos on chemical diagenesis of marine sediments, 600 pp. Ph.D. thesis, Yale University, Connecticut 1977

    Google Scholar 

  • Aller, R. C.: Diagenetic processes near the sediment-water interface of Long Island Sound, I: Decomposition and nutrient element geochemistry (S,N,P): Adv. Geophys. 22, (In press)

  • Aller, R. C., L. K. Benninger and J. K. Cochran: Tracking particle associated processes in nearshore environments by use of 234Th/238U disequilibrium. Earth planet. Sci. Letters (1980), (In press)

  • Aller, R. C. and J. K. Cochran: 234Th/238U disequilibrium in nearshore sediment: particle reworking and diagenetic time scales. Earth planet: Sci. Letters 29, 37–50 (1976)

    Article  Google Scholar 

  • Aller, R. C. and J. Y. Yingst: Biogeochemistry of tube dwellings: a study of the sedentary polychaete Amphitrite ornata (Leidy). J. mar. Res. 36, 201–254 (1978)

    Google Scholar 

  • Allgeier, R. J., W. H. Peterson, C. Juday and E. A. Berge: The anaerobic fermentation of lake deposits. Int. Revue ges. Hydrobiol. 26, 444–461 (1932)

    Google Scholar 

  • Anderson, D. Q.: Distribution of organic matter in marine sediments and its availability to further decomposition. J. mar. Res. 2, 225–235 (1939)

    Google Scholar 

  • Benninger, L. K., R. C. Aller, J. K. Cochran and K. K. Turekian: Effects of biological sediment mixing on the 210Pb chronology and trace metal distribution in a Long Island Sound sediment core. Earth planet. Sci. Letters 43, 241–259 (1979)

    Article  Google Scholar 

  • Ben-Yaakov, S.: pH buffering of pore water of recent anoxic marine sediments. Limnol. Oceanogr. 18, 86–94 (1973)

    Google Scholar 

  • Berner, R. A.: Sedimentary pyrite formation. Am. J. Sci. 268, 1–23 (1970)

    Google Scholar 

  • Berner, R. A.: The benthic boundary layer from the viewpoint of a geochemist. In: The benthic boundary layer, pp 33–55. Ed. by I. N. McCave. New York: Plenum Publishing Corporation (1976a)

    Google Scholar 

  • Berner, R. A.: Inclusion of adsorption in the modelling of early diagenesis. Earth Planet. Sci. Letters 29, 333–340 (1976b)

    Article  Google Scholar 

  • Berner, R. A., M. R. Scott and C. Thomlinson: Carbonate alkalinity in the pore waters of anoxic marine sediments. Limnol. Oceanogr. 15, 544–549 (1970)

    Google Scholar 

  • Billen, G.: A budget of nitrogen recycling in North Sea sediments off the Belgian coast. Estuar. cstl mar. Sci. 7, 127–146 (1978)

    Google Scholar 

  • Christensen, J. P. and T. T. Packard: Sediment metabolism from the northwest African upwelling system. Deep-Sea Res. 24, 331–343 (1977)

    Google Scholar 

  • Christian, R. R., K. Bancroft and W. J. Wiebe: Distribution of microbial adenosine triphosphate in salt marsh sediments at Sapelo Island, Georgia. Soil Sci. 119, 89–97 (1975)

    Google Scholar 

  • Dale, N. G.: Bacteria in intertidal sediments: factors related to their distribution. Limnol. Oceanogr. 19, 509–518 (1974)

    Google Scholar 

  • Dean, W. E., Jr.: Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. sedim. Petrol. 44, 242–248 (1974)

    Google Scholar 

  • Degobbis, D.: On the storage of seawater samples for ammonia determination. Limnol. Oceanogr. 18, 146–150 (1973)

    Google Scholar 

  • Emery, K. O. and S. C. Rittenberg: Early diagenesis of California basin sediments in relation to origin of oil. Bull. Am. Ass. Petrol. Geol. 36, 735–806 (1952)

    Google Scholar 

  • Gardner, L. R.: Chemical models for sulfate reduction in closed anaerobic marine environments. Geochim. cosmochim. Acta 37, 53–68 (1973)

    Article  Google Scholar 

  • Gieskes, J. M. and W. C. Rogers: Alkalinity determination in interstitial waters of marine sediments. J. sedim. Petrol. 43, 272–277 (1973)

    Google Scholar 

  • Goldhaber, M. B., R. C. Aller, J. K. Cochran, J. K. Rosenfeld, C. S. Martens and R. A. Berner: Sulfate reduction, diffusion and bioturbation in Long Island Sound sediments: report of the FOAM group. Am. J. Sci. 277, 193–237 (1977)

    Google Scholar 

  • Goldhaber, M. B. and I. R. Kaplan: Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Sci. 119, 42–55 (1975)

    Google Scholar 

  • Gunkel, W. and C. H. Oppenheimer: Experiments regarding the sulfide formation in sediments of the Texas Gulf Coast. In: Symposium on marine microbiology, pp 674–684. Ed. by C. H. Oppenheimer. Springfield, Illinois: Charles C. Thomas. 1963

    Google Scholar 

  • Hargrave, B. T.: Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnol. Oceanogr. 17, 583–596 (1972)

    Google Scholar 

  • Harris, E. and G. A. Riley: Oceanography of Long Island Sound, 1952–1954. VIII-Chemical composition of the plankton, Bull. Bingham oceanogr. Coll. 15, 315–323 (1956)

    Google Scholar 

  • Hartwig, E. O.: The impact of nitrogen and phosphorus release from a siliceous sediment on the overlying water. In: Estuarine processes, Vol. I. pp 103–117. Ed. by M. L. Wiley. New York: Academic Press 1976

    Google Scholar 

  • Hobbie, J. E., R. J. Daley and S. Jasper: Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envirl Microbiol. 33, 1225–1228 (1977)

    Google Scholar 

  • Jørgensen, B. B.: The sulfur cycle of a coastal marine sediment (Limfjørden, Denmark). Limnol. Oceanogr. 22, 814–831 (1977a)

    Google Scholar 

  • Jørgensen, B. B.: Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41, 7–17 (1977b)

    Google Scholar 

  • Jørgensen, B. B. and T. Cohen: Solar Lake (Sinai). V. The sulfur cycle of the benthic cyanobacterial mats. Limnol. Oceanogr. 22, 657–666 (1977)

    Google Scholar 

  • Jørgensen, B. B. and T. Fenchel: The sulfur cycle of a marine sediment model system. Mar. Biol. 24, 189–201 (1974)

    Google Scholar 

  • Kaplan, I. R., K. O. Emery and S. C. Rittenberg: The distribution and isotopic abundance of sulfur in recent marine sediments off southern California. Geochim. cosmochim. Acta 27, 297–331 (1963)

    Article  Google Scholar 

  • Kaplan, I. R. and S. C. Rittenberg: Microbiological fractionation of sulfur isotopes. J. gen. Microbiol. 34, 195–212 (1964)

    PubMed  Google Scholar 

  • Kato, K.: Chemical investigations on marine humus in bottom sediments. Mem. Fac. Fish, Hokkaido Univ. 4, 91–209 (1956)

    Google Scholar 

  • Krause, H. R.: Biochemische Untersuchungen über den postmortalen Abbau von totem Plankton unter aeroben und anaeroben Bildingungen. Arch. Hydrobiol. 24, 297–337 (1957)

    Google Scholar 

  • Lloyd, B.: Muds of the Clyde Sea area. II. Bacterial content. J. mar. biol. Ass. U.K. 17, 751–765 (1931)

    Google Scholar 

  • Martens, C. S. and R. A. Berner: Methane production in the interstitial waters of sulfate-depleted marine sediments. Science, N.Y. 185, 1167–1169 (1974)

    Google Scholar 

  • Martens, C. S., R. A. Berner and J. K. Rosenfeld: Interstitial water chemistry of anoxic Long Island Sound sediments. 2. Nutrient regeneration and phosphate removal. Limnol. Oceanogr. 23, 605–617 (1978)

    Google Scholar 

  • McCall, P. C.: Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound. J. mar. Res. 35, 221–226 (1977)

    Google Scholar 

  • Miller, L. P.: Tolerance of sulfate-reducing bacteria to hydrogen sulfide. Contr. Boyce Thomson Inst. Pl. Res. 16, 73–83 (1950)

    Google Scholar 

  • Mortland, M. M. and A. R. Wolcott: Sorption of inorganic nitrogen compounds by soil materials. Agron. Monogr. 10, 150–197 (1965)

    Google Scholar 

  • Nakai, N. and M. L. Jensen: The kinetic isotope effect in the bacterial reduction and oxidation of sulphur. Geochim. cosmochim. Acta 28, 1893–1912 (1964)

    Article  Google Scholar 

  • Nedwell, D. B. and G. D. Floodgate: The effect of microbial activity upon the sedimentary sulphur cycle. Mar. Biol. 16, 192–200 (1972)

    Google Scholar 

  • Nixon, S. W., C. A. Oviatt and S. S. Hale: Nitrogen regeneration and the metabolism of coastal marine bottom communities. In: The role of terrestrial and aquatic organisms in decomposition processes, pp 269–283. Ed. by J. M. Anderson and A. Macfadyed. London: Blackwell Scientific Publication 1976. (Proc. 17th Symp. Br. ecol. Sco.)

    Google Scholar 

  • Nõmmik, H.: Ammonium fixation and other reactions involving a non-enzymatic immobilization of mineral nitrogen in soil. Agron. Monogr. 10, 198–258, 1965

    Google Scholar 

  • Olanczuk-Neyman, K. M. and J. H. Vosjan: Measuring respiratory election-transport-system activity in marine sediment. Neth. J. Sea Res. 11, 1–13 (1977)

    Article  Google Scholar 

  • Oppenheimer, C. H.: Bacterial activity in sediments of shallow marine bays. Geochim. cosmochim. Acta 19, 244–260 (1960)

    Article  Google Scholar 

  • Orr, W. L. and A. G. Gaines: Observations on rate of sulfate reduction and organic matter oxidation in the bottom waters of an estuarine basin: the upper basin of the Pettaquamscutt River (Rhode Island). Adv. org. Geochem. 1973, 791–812 (1974)

    Google Scholar 

  • Pamatmat, M. M.: Benthic community metabolism: a review and assessment of present status and outlook. In: Belle W. Baruch Symposium on the Ecology of Marine Benthos, pp 89–111. Ed. by B. C. Coull. Columbia, South Carolina: University of South Carolina Press 1977

    Google Scholar 

  • Pamatmat, M. M. and H. R. Skjoldal: Dehydrogenase activity and adenosine triphosphate concentration of marine sediments in Lindapollene, Norway. Sarsia 56, 1–12 (1974)

    Google Scholar 

  • Ramm, A. E. and D. A. Bella: Sulfide production in anaerobic microcosms. Limnol. Oceanogr. 19, 110–118 (1974)

    Google Scholar 

  • Reuszer, H. W.: Distribution of bacteria in the ocean waters and muds about Cape Cod. Biol. Bull. mar. biol. Lab., Woods Hole 65, 480–497 (1933)

    Google Scholar 

  • Rhoads, D. C., R. C. Aller and M. Goldhaber: The influence of colonizing benthos on physical properties and chemical diagenesis of the estuarine seafloor. In: Belle Baruch Sumposium on the Ecology of Marine Benthos, pp 113–138. Ed. by B. C. Coull. Columbia, South Carolina: University of south Carolina Press 1977

    Google Scholar 

  • Rhoads, D. C., P. L. McCall and J. Y. Yingst: Disturbance and production on the estuarine seafloor. Am. Scient. 66, 577–586 (1978)

    Google Scholar 

  • Richards, F. A.: Anoxic basins and fjords. In: Chemical oceanography, Vol. 1. pp 611–645. Ed. by J. P. Riley and O. Skirrow. New York: Academic Press 1965

    Google Scholar 

  • Rickard, D. T.: Kinetics and mechanism of the sulfidation of goethite. Am. J. Sci. 274, 941–952 (1974)

    Google Scholar 

  • Riley, G. A.: Oceanography of Long Island Sound, 1952–1954. II. Physical oceanography. Bull. Bingham oceanogr. Coll. 15, 15–46 (1956a)

    Google Scholar 

  • Riley, G. A.: Oceanography of Long Island Sound, 1952–1954. IX. Production and utilization of organic matter. Bull. Bingham oceanogr. Coll. 15, 324–344 (1956b)

    Google Scholar 

  • Rittenberg, S. C.: Bacteriological analysis of some long cores of marine sediments. J. mar. Res. 3, 191–201 (1940)

    Google Scholar 

  • Rosenfeld, J. K.: Nitrogen diagenesis in nearshore anoxic sediments, 191 pp. Ph.D. thesis, Yale University, Connecticut 1977

    Google Scholar 

  • Rosenfeld, J. K.: Ammonium adsorption in nearshore anoxic sediments. Limnol. Oceanogr. 24, 356–364 (1979)

    PubMed  Google Scholar 

  • Rowe, G. T., C. H. Cliford, K. L. Smith, Jr. and P. L. Hamilton: Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature, Lond. 255, 215–217 (1975)

    Google Scholar 

  • Sandkvist, A.: Microbiological investigation of modern Dutch tidal sediments. Stockh. Contr. Geol. 15, 68–113 (1968)

    Google Scholar 

  • Smith, K. L., Jr.: Benthic community respiration in the N.W. Atlantic Ocean: in situ measurements from 40 to 5200 m. Mar. Biol. 47, 337–347 (1978)

    Google Scholar 

  • Solórzano, L.: Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr. 14, 799–801 (1969)

    Google Scholar 

  • Sorokin, Y. I.: Experimental investigation of bacterial sulphate reduction in the Black Sea using S35. Mikrobiologiya 31, 329–335 (1962)

    Google Scholar 

  • Trask, P. D.: Origin and environment of source sediments of petroleum, 323 pp. Houston, Texas. American Petroleum Institute, Gulf Publishing Co. 1932

    Google Scholar 

  • Trudinger, P. A., I. B. Lambert and G. W. Skying: Biogenic sulfide ores: a feasibility study. Econ. Geol. 67, 1114–1127 (1972)

    Google Scholar 

  • Vosjan, J. H.: Sulfate in water and sediment of the Dutch Wadden Sea. Neth. J. Sea Res. 8, 208–213 (1974)

    Article  Google Scholar 

  • Waksman, S. A.: On the distribution of organic matter in the sea bottom and the chemical nature and origin of marine humus. Soil Sci. 36, 125–147 (1933)

    Google Scholar 

  • Waksman, S. A. and H. Hotchkiss: On the oxidation of organic matter in marine sediments by bacteria. J. mar. Res. 1, 101–118 (1938)

    Google Scholar 

  • Waksman, S. A., H. W. Reuszer, C. L. Carey, M. Hotchkiss and C. E. Renn: Bacteriological investigations of sea water and marine bottoms. Biol. Bull. mar. biol. Lab., Woods Hole 64, 183–205 (1933)

    Google Scholar 

  • Watson, S. W., T. J. Novitsky, H. L. Quinby and F. W. Valois: Determination of bacterial number and biomass in the marine environment. Appl. envir. Microbiol. 33, 940–946 (1977)

    Google Scholar 

  • Wheatland, A. B.: Factors affecting the formation and oxidation of sulphides in a polluted estuary. J. Hyg., Camb. 52, 194–210 (1954)

    Google Scholar 

  • Wieser, W. and M. Zech: Dehydrogenases as tools in the study of marine sediments. Mar. Biol. 36, 113–122 (1976)

    Google Scholar 

  • Wirsen, C. O. and H. W. Jannasch: Microbial transformation of some 14-C substrates in coastal water and sediment. Microb. Ecol. 1, 25–37 (1974)

    Google Scholar 

  • Wirsen, C. O. and H. W. Jannasch: Decomposition of solid organic materials in the deep sea. Envir. Sci. Technol. 10, 880–886 (1976)

    Google Scholar 

  • Yingst, J. Y.: Patterns of micro- and meiofaunal abundance in marine sediments, measured with the adenosine triphosphate assay. Mar. Biol. 47, 41–54 (1978)

    Google Scholar 

  • Yingst, J. Y. and D. C. Rhoads: The role of bioturbation in the enhancement of microbial turnover rates in marine sediments. In: Marine benthic dynamics. Ed. by K. R. Tenore and B. C. Coull. Columbia, South Carolina: University of South Carolina Press (In press)

  • ZoBell, C. E.: Studies on the bacterial flora of marine bottom sediments. J. sedim. Petrol. 8, 10–18 (1938)

    Google Scholar 

  • ZoBell, C. E. and D. Q. Anderson: Vertical distribution of bacteria in marine sediments. Bull. Am. Ass. Petrol. Geol. 20, 258–269 (1936)

    Google Scholar 

  • ZoBell, C. E. and C. B. Feltham: The bacterial ecology of a marine mud flat as an ecological factor. Ecology 23, 69–78 (1942)

    Google Scholar 

  • ZoBell, C. E. and S. C. Rittenberg: Sulphate reducing bacteria in marine sediments. J. mar. Res. 7, 606–617 (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by I. Morris, West Boothbay Harbor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aller, R.C., Yingst, J.Y. Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of long Island Sound, USA. Mar. Biol. 56, 29–42 (1980). https://doi.org/10.1007/BF00390591

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390591

Keywords

Navigation