Skip to main content
Log in

Non-aqueous electrolyte solutions

Promising materials for electrochemical technologies

  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Non-aqueous electrolyte solutions are nowadays intensively studied owing to their unique properties for their application in various electrochemical devices and procedures. Important advances have already been made in high-energy primary batteries, wet capacitors, electroplating, phase-transfer catalysis and electro-organic synthesis; advances are expected in further fields such as high-energy secondary batteries, non-emissive displays, solar cells, thin-film procedures and coating. A survey is given both for successful recent applications and expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman, H.L.: Faraday Discuss. Chem. Soc. 64, 7 (1977)

    Google Scholar 

  2. Friedman, H.L.: Ann. Rev. Phys. Chem. 32, 179 (1981)

    Google Scholar 

  3. Covington, A.K., Dickinson, T. (eds.): Physical Chemistry of Organic Solvent Systems. New York: Plenum 1973

    Google Scholar 

  4. Barthel, J., et al.: Non-Aqueous Electrolyte Solutions in Chemistry and Modern Technology (Top. Curr. Chem., Vol. 111). Berlin: Springer 1983

    Google Scholar 

  5. Popovych, O., Tomkins, R.P.T.: Nonaqueous Solution Chemistry. New York: Wiley 1981

    Google Scholar 

  6. Burgess, J.: Metal Ions in Solution. Chichester: Ellis Horwood 1978

    Google Scholar 

  7. Jensen, W.B.: The Lewis Acid-Base Concepts. New York: Wiley 1980

    Google Scholar 

  8. Coetzee, J.F., Ritchie, C.D. (eds.): Solute Solvent Interactions, Vols. 1, 2. New York: Dekker 1969, 1976

    Google Scholar 

  9. Reichardt, C.: Solvent Effects in Organic Chemistry. Weinheim: Verlag Chemie 1979

    Google Scholar 

  10. Gutmann, V.: The Donor-Acceptor Approach to Molecular Interactions. New York: Plenum 1978

    Google Scholar 

  11. Barthel, J.: Ionen in nichtwäßrigen Lösungen. Darmstadt: Steinkopff 1976

    Google Scholar 

  12. Falkenhagen, H.: Theorie der Elektrolyte. Stuttgart: Hirzel 1971

    Google Scholar 

  13. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions. New York: Reinhold 1958

    Google Scholar 

  14. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. London: Butterworths 1968

    Google Scholar 

  15. Petrucci, S.: Ionic Interactions, Vols. 1, 2. New York: Academic Press 1971

    Google Scholar 

  16. Bockris, J.O'M., Reddy, A.K.N.: Modern Electrochemistry, Vols. 1, 2. New York: Plenum 1970

    Google Scholar 

  17. Hertz, H.G.: Electrochemistry, A Reformulation of the Basic Principles (Lecture Notes in Chemistry, Vol. 17). Berlin: Springer 1980

    Google Scholar 

  18. Kortüm, G.: Lehrbuch der Elektrochemie. Weinheim: Verlag Chemie 1966

    Google Scholar 

  19. Smedley, S.I.: The Interpretation of Ionic Conductivity in Liquids. New York: Plenum 1980

    Google Scholar 

  20. Adams, R.N.: Electrochemistry at Solid Electrodes. New York: Dekker 1969

    Google Scholar 

  21. Mann, C.K., in: Electroanalytical Chemistry, Vol. 3, p. 65 (A.J. Bard, ed.). New York: Dekker 1969

    Google Scholar 

  22. Horowitz, H.H., et al., in: Proc. Symp. on Lithium Batteries, p. 141 (H.V. Venkatasetty, ed.). Pennington: Electrochem. Soc. 1981

    Google Scholar 

  23. Haase, R., Sauermann, P.F., Drücker, K.-H.: Z. Phys. Chem. N.F. 47, 224 (1965)

    Google Scholar 

  24. Haase, R., Drücker, K.-H.: ibid. 46, 141 (1965)

    Google Scholar 

  25. Barthel, J., Gores, H.J., Schmeer, G.: Ber. Bunsenges. Phys. Chem. 83, 911 (1979)

    Google Scholar 

  26. Gores, H.J., Barthel, J.: J. Solut. Chem. 9, 939 (1980)

    Google Scholar 

  27. Liang, C.C., Bro, P.: J. Electrochem. Soc. 116, 1322 (1969)

    Google Scholar 

  28. von Alpen, U., Bell, M.F.: Sol. State Ionics 3/4, 259 (1981)

    Google Scholar 

  29. Murphy, D.W., Broadhead, J., Steele, B.C.H. (eds.): Materials for Advanced Batteries. New York: Plenum 1980

    Google Scholar 

  30. Kronenberg, M.L., Blomgren, G.E., in: Comprehensive Treatise of Electrochemistry, Vol. 3 (J.O'M. Bockris et al., eds.). New York: Plenum 1981

    Google Scholar 

  31. Dey, A.N.: Thin Sol. Films 43, 131 (1977)

    Google Scholar 

  32. Scrosati, B.: Electrochim. Acta 26, 1559 (1981)

    Google Scholar 

  33. Besenhard, J.O., Eichinger, G.: J. Electroanal. Chem. Interfac. Electrochem. 68, 1 (1976)

    Google Scholar 

  34. Eichinger, G., Besenhard, J.O.: ibid. 72, 1 (1976)

    Google Scholar 

  35. Yeager, E.B., et al. (eds.): Proc. Workshop on Lithium Nonaqueous Battery Electrochemistry, Vol. 80–7. Pennington: Electrochem. Soc. 1980

    Google Scholar 

  36. Venkatasetty, H.V. (ed.): Proc. Symp. on Lithium Batteries, Vol. 81–4. Pennington: Electrochem. Soc. 1981

    Google Scholar 

  37. Owens, B.B., Margalit, N. (eds.): Proc. Symp. on Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries, Vol. 80–4. Pennington: Electrochem. Soc. 1980

    Google Scholar 

  38. Collins, D.H. (ed.): Power Sources 5, Proc. 9th Int. Symp. Brighton 1974. London: Academic Press 1975

    Google Scholar 

  39. Collins, D.H. (ed.): Power Sources 6, Proc. 10th Int. Symp. Brighton 1976. London: Academic Press 1977

    Google Scholar 

  40. Thompson, J. (ed.): Power Sources 7, Proc. 11th Int. Symp. Brighton 1978. London: Academic Press 1979

    Google Scholar 

  41. Thompson, J. (ed.): Power Sources 8, Proc. 12th Int. Symp. Brighton 1980. London: Academic Press 1981

    Google Scholar 

  42. Graham, R.W.: Primary Batteries, Recent Advances, Chem. Tech. Rev. No 105. Park Ridge: Noyes Data Corp. 1978

    Google Scholar 

  43. Graham, R.W.: Secondary Batteries, Recent Advances, Chem. Tech. Rev. No 106. Park Ridge: Noyes Data Corp. 1978

    Google Scholar 

  44. Graham, R.W.: Rechargeable Batteries, Advances since 1977, Chem. Tech. No 160. Park Ridge: Noyes Data Corp. 1980

    Google Scholar 

  45. Barthel, J., et al: unpublished results

  46. Olmstead, W.N., in: [36], p. 149

    Google Scholar 

  47. Brummer, S.B., Koch, V.R., Rauh, R.D., in: [29], p. 123

    Google Scholar 

  48. Holleck, G.L., Abraham, K.M., Brummer, S.B., in: [37], p. 384

    Google Scholar 

  49. Goldmann, J.L., et al.: J. Electrochem. Soc. 127, 1461 (1980)

    Google Scholar 

  50. Abraham, K.M., Goldmann, J.L., Dempsey, M.D.: ibid. 128, 2493 (1981)

    Google Scholar 

  51. Whittingham, M.S.: Progr. Sol. State Chem. 12, 41 (1978)

    Google Scholar 

  52. Armand, M.B., in: [29], p. 145

    Google Scholar 

  53. Brenner, A., in: Advances in Electrochemistry and Electrochemical Engineering, Vol. 5, p. 205 (C.W. Tobias, ed.). New York: Wiley 1967

    Google Scholar 

  54. Peled, E., Gileadi, E.: J. Electrochem. Soc. 123, 15 (1976)

    Google Scholar 

  55. Ziegel, S., Peled, E., Gileadi, E.: Electrochim. Acta 23, 363 (1978)

    Google Scholar 

  56. Reger, A., Peled, E., Gileadi, E.: J. Electrochem. Soc. 123, 638 (1976)

    Google Scholar 

  57. Elam, M., Gileadi, E.: ibid. 126, 1474 (1979)

    Google Scholar 

  58. Reger, A., Peled, E., Gileadi, E.: J. Phys. Chem. 83, 869 (1979)

    Google Scholar 

  59. Reger, A., Peled, E., Gileadi, E.: ibid. 83, 873 (1979)

    Google Scholar 

  60. Peled, E., Brand, M., Gileadi, E.: J. Electrochem. Soc. 128, 1697 (1981)

    Google Scholar 

  61. Yoshio, M., et al., in: 7th Int. Conf. on Non-Aqueous Solutions, Vol. 1, p. E3 (J. Barthel, ed.). Regensburg 1980

  62. Elwell, D.: J. Cryst. Growth 52, 741 (1981)

    Google Scholar 

  63. Agrawal, A.K., Austin, A.E.: J. Electrochem. Soc. 128, 2292 (1981)

    Google Scholar 

  64. Rama Mohan, T.R., Kröger, F.A.: Electrochim. Acta 27, 371 (1982)

    Google Scholar 

  65. Bard, A.J.: J. Phys. Chem. 86, 172 (1982)

    Google Scholar 

  66. Morrison, S.R.: Electrochemistry at Semiconductor and Oxidized Metal Electrodes. New York: Plenum 1980

    Google Scholar 

  67. Photoelectrochemistry, Faraday Discuss. Chem. Soc. 70 (1981)

  68. Seraphin, B.O. (ed.): Topics in Applied Physics, Vol. 31, Solar Energy Conversion. Berlin: Springer 1979

    Google Scholar 

  69. Bard, A.J.: Science 207, 139 (1980)

    Google Scholar 

  70. Heller, A. (ed.): Semiconductor Liquid Junction Solar Cells, Proc. Vol. 77–3. Pennington: Electrochem. Soc. 1977

    Google Scholar 

  71. Gerischer, H., in: [70], p. 6

    Google Scholar 

  72. Bard, A.J., Faulkner, L.R.: Electrochemical Methods. New York: Wiley 1980

    Google Scholar 

  73. Noufi, R., et al.: J. Electrochem. Soc. 129, 2261 (1981)

    Google Scholar 

  74. Noufi, R., Tench, D., Warren, L.F.: ibid. 128, 2596 (1981)

    Google Scholar 

  75. Noufi, R., Frank, A.J., Nozik, A.J.: J. Am. Chem. Soc. 103, 1849 (1981)

    Google Scholar 

  76. Noufi, R., Tench, D., Warren, L.F.: J. Electrochem. Soc. 127, 2310 (1980)

    Google Scholar 

  77. Kohl, P.A., Bard, A.J.: ibid. 126, 603 (1979)

    Google Scholar 

  78. Noufi, R., Tench, D., Warren, L.F.: ibid. 128, 2363 (1981)

    Google Scholar 

  79. Langmuir, M.E., Hoenig, P., Rauh, R.D.: ibid. 128, 2357 (1981)

    Google Scholar 

  80. Tomkiewicz, M., Ling, I., Parsons, W.S.: ibid. 129, 2016 (1982)

    Google Scholar 

  81. Noufi, R., Tench, D.: ibid. 127, 188 (1980)

    Google Scholar 

  82. Bard, A.J., Kohl, P.A., in: [70], p. 222

    Google Scholar 

  83. Wrighton, M.S., et al., in: [70], p. 138

    Google Scholar 

  84. Display Devices (Topics in Applied Physics, Vol. 40). Berlin: Springer 1980

  85. Bogenschütz, A.F., Krusemark, W.: Elektrochemische Bauelemente. Weinheim: Verlag Chemie 1976

    Google Scholar 

  86. Kmetz, A.R., von Willisen, F.K.: Nonemissive Electrooptic Displays. New York: Plenum 1976

    Google Scholar 

  87. Freller, H., Mund, K., in: Elektrochemie und Elektronik, DECHEMA-Monographien, Vol. 90, p. 107 (F. von Stumm, ed.). Weinheim: Verlag Chemie 1981

    Google Scholar 

  88. Chang, I.F.: Proc. Soc. Inf. Displ. 21, 45 (1980)

    Google Scholar 

  89. Ohzuku, T., Hirai, T.: Electrochim. Acta 27, 1263 (1982)

    Google Scholar 

  90. Mohapatra, S.K.: J. Electrochem. Soc. 125, 284 (1978)

    Google Scholar 

  91. Bohnke, O., et al.: Sol. State Ionics 6, 267 (1982)

    Google Scholar 

  92. Matsuhiro, K., Masuda, Y.: SID, 1979 Digest, quoted after Beni, G.: Sol. State Ionics 3/4, 157 (1981)

    Google Scholar 

  93. Novotny, V., Hopper, M.A.: J. Electrochem. Soc. 126, 2211 (1979)

    Google Scholar 

  94. Dalisa, A.L.: Proc. Soc. Inf. Displ. 18, 1, 43 (1977); in: [84], p. 213

    Google Scholar 

  95. Camlibel, I., et al.: Appl. Phys. Lett. 33, 793 (1978)

    Google Scholar 

  96. Krumpelt, M., Weissmann, E.Y., Alkire, R.C. (eds.): Electro-Organic Synthesis Technology, AIChE Symp. Ser. No 185, Vol. 75, AIChE Meeting, Atlanta 1978. New York: AIChE 1979

    Google Scholar 

  97. Baizer, M.M.: J. Appl. Electrochem. 10, 285 (1980)

    Google Scholar 

  98. Schäfer, H.J.: Angew. Chem. 93, 978 (1981)

    Google Scholar 

  99. Kyriacou, D.K.: Basis of Electroorganic Synthesis. New York: Wiley 1981

    Google Scholar 

  100. Lelandais, D.: Labo-Pharm.-Probl. Techn. 283, 43 (1979)

    Google Scholar 

  101. Miller, L.L., Kariv, E., Behling, J.R., in: Annu. Rep. Med. Chem. Vol. 12, p. 309 (F.H. Clarke, ed.). New York: Academic Press 1977

    Google Scholar 

  102. Fioshin, M.Y.: Sov. Electrochem. 13, 1 (1977)

    Google Scholar 

  103. Cipris, D., Mador, I.L.: J. Electrochem. Soc. 125, 1954 (1978)

    Google Scholar 

  104. Nohe, H., in: [96], p. 69

    Google Scholar 

  105. Jansson, R.E.W., Fleischmann, M., in: [96], p. 2

    Google Scholar 

  106. Pletcher, D., Razaq, M.: J. Appl. Electrochem. 10, 575 (1980)

    Google Scholar 

  107. Ronlán, A., Hammerich, O., Parker, V.D.: J. Am. Chem. Soc. 95, 7132 (1973)

    Google Scholar 

  108. Falck, J.R., Miller, L.L., Stermitz, F.R.: ibid. 96, 2981 (1974)

    Google Scholar 

  109. Becker, J.Y., et al.: ibid. 97, 853 (1975)

    Google Scholar 

  110. Vincent, F., Tardivel, R., Mison, P.: Tetrahedron Lett. 1975, 603

  111. Swann Jr., S., Alkire, R.C.: Bibliography of Electro-Organic Synthesis, 1801–1975. Princeton: Electrochem. Soc. 1980

    Google Scholar 

High-Energy Batteries

  1. Kedrinskii, I.A., et al.: Elektrokhimiya 18, 965 (1982); Sov. Electrochem., p. 858: Mechanism of Electrode Reactions on a Lithium Electrode

    Google Scholar 

  2. Foos, J.S., McVeigh, J.: J. Electrochem. Soc. 130, 628 (1983): Lithium Cycling in Polymethoxymethane Solvents

    Google Scholar 

  3. Messina, R., et al.: J. Power Sources 8, 277 (1982): Electrochemical Behaviour of New Cathodic Materials Usable in Lithium Batteries: AgBi(CrO4)2 and Bi2O(CrO4)2

    Google Scholar 

  4. Kumagi, N., et al.: Electrochim. Acta 28, 17 (1983): Structural Changes of Nb2O5 and V2O5 as Rechargeable Cathodes for Lithium Battery

    Google Scholar 

  5. Abraham, K.M.: Sol. State Ionics 7, 199 (1982): Intercalation Positive Electrodes for Rechargeable Sodium Cells

    Google Scholar 

  6. DiPietro, B., et al.: Synth. Met. 5, 1 (1982): Electrochemical Investigation of the Lithium-Niobium Disulphide Organic Electrolyte Rechargeable Cell

    Google Scholar 

  7. Vasudeva Rao, P.V.: J. Electrochem. Soc. India 31, 44 (1982): Recent Trends in Primary and Secondary Batteries

    Google Scholar 

  8. Beck, F.: Chem. Ing. Tech. 54, 809 (1982): Neuartige Batterie-Systeme

    Google Scholar 

  9. Samoano, R.: Appl. Phys. Commun. 1, 179 (1981–82): Polymeric Metallic Electrodes for Rechargeable Battery Applications

    Google Scholar 

  10. Nigrey, P.J., et al.: Mol. Cryst. Liq. Cryst. 83, 309 (1982): Electrochemistry of (CH)x: Leightweight Rechargeable Batteries Using (CH)x as Cathode- and Anode-Active Materials

    Google Scholar 

  11. Naarmann, H.: Angew. Makromol. Chem. 109/110, 295 (1982)

    Google Scholar 

  12. Ikeda, H.: New Mater. New Processes 2, 45 (1983): Present Status of Lithium Batteries in Japan

    Google Scholar 

Electrodeposition

  1. Peled, E., Gileadi, E.: Annu. Tech. Conf. Am. Electroplat. Soc. 68th., Paper G 2 (1981): The Electroplating of Al from Aromatic Solvents Containing Al2Br6 and KBr

  2. Suchentrunk, R.: ibid., Paper I 1: Electro-Deposited Aluminium: A Protection Coating Against Corrosion in the Aircraft Industry

  3. Takei, T.: ibid., Paper G 4: Electrodeposition of Al from Al(CF3COO)3-Organic Solution

  4. Daenen, T., et al.: ibid., Paper G 1: Cyclic Reaction Mechanism in the Electrodeposition of Aluminium

  5. Capuano, G.A., et al.: ibid., Paper G 3: The Electrodeposition of Aluminium and Aluminium-Copper Alloys from Alkyl Benzene Electrolytes

  6. Elwell, D., Feigelson, R.S.: Sol. Energy Mat. 6, 123 (1982): Electrodeposition of Solar Silicon

    Google Scholar 

Solar Energy Conversion

  1. Canfield, D., Morrison, S.R.: Lawrence Berkeley Lab. 1982, Final Report LBL-14639: Electrochemical Storage Cell Based on Polycrystalline Silicon

  2. Bard, A.J.: Techn. Rep. No. 20, Contract No. N00014-78-C-0592, Nr. 051-693, 1981: The Design of Semiconductor Photoelectrochemical Systems for Solar Energy Conversion

  3. Heller, A., in: Frontiers of Chemistry, p. 27 (Laidler, K.J., ed.). Oxford: Pergamon 1982

    Google Scholar 

  4. Gronet, Ch.M., et al.: Proc. Nat. Acad. Sci. USA 80, 1152 (1983): n-Type Silicon Photoelectrochemistry in Methanol

    Google Scholar 

  5. Brondel, Ph., et al.: Sol. Energy Mat. 7, 23 (1982): Investigation on Photoelectrochemical Cells Based Upon Silicon/Methanol Interfaces

    Google Scholar 

  6. Bicelli, L.P.: Chim. Ind. 64 636, 797 (1982): Electrochemical Methods for the Utilization of Solar Energy

    Google Scholar 

  7. Finklea, H.O.: J. Chem. Ed. 60, 325 (1983): Photoelectrochemistry: Introductory Concepts

    Google Scholar 

  8. Turner, J.A.: ibid. 60, 327 (1983): Energetics of the Semiconductor-Electrolyte Interface

    Google Scholar 

  9. Wrighton, M.S.: ibid. 60, 335 (1983): Chemically Derivatized Semiconductor Photoelectrodes

    Google Scholar 

  10. Parkinson, B.: ibid. 60, 338 (1983): An Overview of the Progress in Photoelectrochemical Energy Conversion

    Google Scholar 

Non-Emissive Electro-Optic Displays

  1. Freller, H., et al.: BMFT-FB-T 81-141: Electrochrome Anzeigen

  2. Lampert, C.M.: Lawrence Berkeley Lab. Report LBL-13753, 1983: Innovative Solar Optical Materials

  3. Beni, G., Scrosati, B.: Chim. Ind. 64, 487 (1982): Recenti sviluppi in energetica electrochimica, IV — Display elettrocromici

    Google Scholar 

Electro-Organic Synthesis

  1. Weinberg, N.L.: J. Chem. Educ. 60, 268 (1983): Electrosynthesis Technology

    Google Scholar 

  2. Wagenknecht, J.H.: ibid. 60, 271 (1983): Industrial Organic Electrosynthesis

    Google Scholar 

  3. Alkire, R.C.: ibid. 60, 274 (1983): Electrochemical Engineering

    Google Scholar 

  4. Ellis, R., et al.: J. Appl. Electrochem. 12, 687 (1982): Electrosynthesis in Systems of two Immiscible Liquids and a Phase Transfer Catalyst

    Google Scholar 

  5. Kreysa, G.: Chem. Ing. Tech. 55, 267 (1983): Aktuelle Entwicklungslinien der elektrochemischen Prozeßtechnik

    Google Scholar 

  6. Fioshin, M.Ya, Tomilov, A.P.: Elektrokhimiya 19, 3 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gores, H.J., Barthel, J. Non-aqueous electrolyte solutions. Naturwissenschaften 70, 495–503 (1983). https://doi.org/10.1007/BF00394055

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394055

Keywords

Navigation