Skip to main content
Log in

Lipoquinones of some bacteria and mycoplasmas, with considerations on their functional significance

  • Biochemistry
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In a comparative study the lipoquinones of some chemoorganotrophic, facultatively aerobic bacteria, and representative Acholeplasma, Mycoplasma, Spiroplasma, and Thermoplasma strains were investigated. The quinones were partly purified by preparative thin layer chromatography of lipid extracts, and characterized by their difference spectra (reduced minus oxidized) and Rf values. Respiring bacteria expectedly contained benzoquinones and/or naphthoquinones in micromolar concentrations whereas some aerotolerant, cytochrome-less, gram-positive bacteria were found to contain menaquinones in nanomolar concentrations, or even no quinones; only Streptococcus faecalis, an organism supposed to use a rudimentary, flavin-terminated respiratory chain system produced desmethyl menaquinone in amounts ranging between “high” and “low” quinone contents. Among the mycoplasmas investigated, only Thermoplasma acidophilum was found to be capable of synthesizing quinones (MK-7) in the micromolar order of magnitude indicating a respiratory electron transport system. The presence of energetically useful respiratory chain systems in Acholeplasma, Mycoplasma, and Spiroplasma is questioned since these organisms contain quinones (MK-4) in nanomolar concentrations, or no quinones, depending on the presence of exogeneous MK-6 in the growth medium. The possible metabolic role of menaquinones present in “low” amounts, as well as the role of NADH oxidase systems more or less tightly bound to the cytoplasmic membrane with the mycoplasmas deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Billeter, M. und Martius, C. M. 1960. Über die Umwandlung von Phyllochinon (Vit. K1) in Vitamin K2(20) im Tierkörper.—Biochem. Z. 333: 430–439.

    Google Scholar 

  • Callies, E. and Mannheim, W. 1977. Classification of the Flavobacterium-Cytophaga complex on the basis of respiratory quinones and fumarate respiration.—Int. J. System. Bacteriol. in press.

  • Christiansen, C., Freundt, E. A. and Black, F. T. 1975. Genome size and deoxyribonucleic acid base composition of Thermoplasma acidophilum—Int. J. System.Bacteriol. 25: 99–101.

    Google Scholar 

  • Dolin, M. I. 1955. The DPNH-oxidizing enzymes of Streptococcus faecalis. II. The enzymes utilizing oxygen, cytochrome c, peroxide and 2,6 dichlorophenol-indophenol or ferricyanide as oxidants.—Arch. Biochem. Biophys. 55: 415–435.

    Google Scholar 

  • Dolin, M. I. and Baum, R. H. 1965. Localization of electron transport components in Streptococcus faecalis 10C1.—Bacteriol. Proc. 65: 96–97.

    Google Scholar 

  • Dunphy, P. J., Phillips, P. G. and Brodie, A. F. 1971. Separation and identification of menaquinone from microorganisms.—J. Lipid Res. 12: 442–449.

    Google Scholar 

  • Gale, P. H., Erickson, R. E., Page, A. C.Jr. and Folkers, K. 1964. Coenzyme Q. LI. New data on the distribution of coenzyme Q in nature.—Arch. Biochem. Biophys. 104: 169–172.

    Google Scholar 

  • Holländer, R. 1976. Correlation of the function of demethylmenaquinone in bacterial electron transport with its redox potential.—FEBS Letters 72: 98–100.

    Google Scholar 

  • Holländer, R. and Mannheim, W. 1975. Characterization of hemophilic and related bacteria by their respiratory quinones and cytochromes.—Int. J. System. Bacteriol. 25: 102–107.

    Google Scholar 

  • Kröger, A. 1976. Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors.—Symp. Soc. Gen. Microbiol. 27: 61–93.

    Google Scholar 

  • Kröger, A. and Dadák, V. 1969. On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium.—Eur. J. Biochem. 11: 328–340.

    Google Scholar 

  • Kröger, A., Dadák, V., Klingenberg, M. and Diemer, F. 1971. On the role of quinones in bacterial electron transport. Differential roles of ubiquinone and menaquinone in Proteus rettgeri—Eur. J. Biochem. 21: 322–333.

    Google Scholar 

  • Kröger, A. and Klingenberg, M. 1970. Quinones and nicotinamide nucleotides associated with electron transfer.—Vitamins and Hormones 28: 533–574.

    Google Scholar 

  • Langworthy, T. A., Smith, P. F. and Mayberry, W. R.. 1972. Lipids of Thermoplasma acidophilum.—J. Bacteriol. 112: 1193–1200.

    Google Scholar 

  • Larraga, V. and Razin, S. 1976. Reduced nicotinamide adenine dinucleotide oxidase activity in membranes and cytoplasm of Acholeplasma laidlawii and Mycoplasma mycoides subsp. capri—J. Bacteriol. 128: 827–833.

    Google Scholar 

  • Low, I.E., Eaton, M. D. and Proctor, P. 1968. Relation of catalase to substrate utilization by Mycoplasma pneumoniae—J. Bacteriol. 95: 1425–1430.

    Google Scholar 

  • Mannheim, W., Stieler, W., Wolf, G. and Zabel, R. 1977. Taxonomic significance of respiratory quinones and fumarate respiration in Actinobacillus and Pasteurella.—Int. J. System. Bacteriol. in press.

  • Mannheim, W. and Wolf, G. 1972. The temperature requirements of growth of some mycoplasmas.—Zbl. Bakt. Hyg., I Abt. Orig. A 221: 234–249.

    Google Scholar 

  • Newton, N. A., Cox, G. B. and Gibson, F. 1971. The function of menaquinone (Vitamin K2) in Escherichia coli K-12.—Biochim. Biophys. Acta 244: 155–166.

    Google Scholar 

  • Pollack, J. D. 1975. Localization of reduced nicotinamide adenine dinucleotide oxidase activity in Acholeplasma and Mycoplasma species.—Int. J. System. Bacteriol. 25: 108–113.

    Google Scholar 

  • Rodwell, A. W. 1967. The nutrition and metabolism of mycoplasma: Progress and problems.—Ann. N.Y. Acad. Sci. 143: 88–109.

    Google Scholar 

  • Smith, P. F. 1971. The biology of mycoplasmas.—Acad. Press. Inc. New York.

    Google Scholar 

  • Szarkowska, L. and Klingenberg, M. 1963. On the role of ubiquinone in mitochondria. Spectrophotometric and chemical measurement of its redox reaction.—Biochem. Z. 338: 674–697.

    Google Scholar 

  • VanDemark, P. J. and Smith, P. F. 1964. Respiratory pathways in the Mycoplasma. II. Pathway of electrom transport during oxidation of reduced nicotinamide adenine dinucleotide by Mycoplasma hominis.—J. Bacteriol. 88: 122–129.

    Google Scholar 

  • Weibull, C. and Hammarberg, K. 1962. Occurrence of catalase in pleuropneumonia-like organisms and bacterial L-forms.—J. Bacteriol. 84: 520–525.

    Google Scholar 

  • Whistance, G. R., Dillon, J. F. and Threlfall, D. R. 1969. The nature, intergeneric distribution and biosynthesis of isoprenoid quinones and phenols in gram-negative bacteria.—Biochem. J. 111: 461–472.

    Google Scholar 

  • White, D. C. 1965. The function of 2-demethyl vitamin K2 in the electron transport system of Hemophilus parainfluenzae.—J. Biol. Chem. 240: 1387–1394.

    Google Scholar 

  • White, D. C. and Smith, L. 1962. Hematin enzymes of Hemophilus parainfluenzae—J. Biol. Chem. 237: 1332–1336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holländer, R., Wolf, G. & Mannheim, W. Lipoquinones of some bacteria and mycoplasmas, with considerations on their functional significance. Antonie van Leeuwenhoek 43, 177–185 (1977). https://doi.org/10.1007/BF00395672

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395672

Keywords

Navigation