Skip to main content
Log in

Lichen biomonitoring of mercury emission and deposition in mining, geothermal and volcanic areas of Italy

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Natural emissions of Hg are attracting increased interest both for their environmental implications and for possible applications in the exploration of mineral, petroleum and geothermal fields. However, daily and seasonal fluctuations in concentrations of Hg in the atmosphere, caused by meteorological and environmental variables, has made it very difficult to assess Hg anomalies by conventional analytical procedures. Some species of widespread foliose lichens from an abandoned cinnabar mining and smelting area (Mt. Amiata), geothermal fields (Larderello, Bagnore and Piancastagnaio, Central Italy), and active volcanic areas (Mt. Etna and Vulcano, Southern Italy) seem to be very suitable biomonitors of gaseous Hg; especially as lichen thalli have an Hg content which reflects average values measured in air samples. We discuss the advantages of quantitative biological monitoring by lichens with respect to conventional air sampling in large-scale monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AndrenA. W. and NriaguJ. O.: 1979, ‘The Global Cycle of Mercury’, in J. O.Nriagu (ed.), The Biogeochemistry of Mercury in the Environment, Elsevier/North Holland Biomedical Press, Amsterdam, pp. 1–21.

    Google Scholar 

  • BargagliR. and BaldiF.: 1984, ‘Mercury and Methylmercury in Higher Fungi and Their Relation with the Substrata in a Cinnabar Mining Area’, Chemosphere 13, 1059–1071.

    Google Scholar 

  • BargagliR., IoscoF. P. and LeonzioC.: 1985, ‘Monitoraggio di Elementi in Tracce Mediante Licheni Epifiti-Osservazioni nell'Area Industriale di Rosignano Solvay’, Inquinamento 27, 33–37.

    Google Scholar 

  • BargagliR., BarghigianiC. and MasertiB. E.: 1986, ‘Mercury in Vegetation of the Mt. Amiata Area (Italy)’, Chemosphere 15, 1035–1042.

    Google Scholar 

  • BargagliR., IoscoF. P. and BarghigianiC.: 1987a, ‘Assessment of Mercury Dispersal in a Abandoned Mining Area by Soil and Lichen Analysis’, Water, Air, and Soil Pollut. 36, 219–225.

    Google Scholar 

  • BargagliR., IoscoF. P. and D'AmatoM. L.: 1987b, ‘Zonation of Trace Metal Accumulation in Three Species of Epiphytic Lichens Belonging to the Genus Parmelia’, Cryptogamie, Bryol. Lichénol. 8, 32–40.

    Google Scholar 

  • BargagliR.: 1989a, ‘Assessment of Metal Pollution by Epiphytic Lichens: the Incidence of Crustal Materials and of the Possible Uptake from Substrate Bark’, Studia Geobotanica 10, 97–103.

    Google Scholar 

  • BargagliR.: 1989b, ‘Determination of Metal Deposition Patterns by Epiphytic Lichens’, J. Toxicol. Environ. Chem. 18, 249–256.

    Google Scholar 

  • Bargagli, R. and Barghigiani, C.: 1989, ‘Preliminary Report on Mercury Distribution at Vulcano Island in Relation to the Volcanic Activity’, Boll. G.N. Vulcanol. (in press).

  • BarghigianiC., BargagliR., and GioffrèD.: 1988, ‘Mercury in the Environment of the Mt. Etna Volcanic Area’, Environ. Technol. Lett. 9, 239–244.

    Google Scholar 

  • BrederR. and FluchtR.: 1984, ‘Mercury Levels in the Atmosphere of Various Regions and Locations in Italy’, Sci. Total Environ. 40, 231–244.

    Google Scholar 

  • Buat-MenardP. and ArnoldM., 1978. ‘The Heavy Metal Chemistry of Atmospheric Particulate Matter Emitted by Mt. Etna Volcano’, Geophys. Res. Lett. 5, 245–248.

    Google Scholar 

  • ButtC. R. M. and GoleM. J.: 1985, ‘Helium in Soil and Overburden Gas as an Exploration Pathfinder—An Assessment’, J. Geochem. Explor. 24, 141–173.

    Google Scholar 

  • CarrG. R., WilmshurstJ. R. and RyallW. R.: 1986, ‘Evaluation of Mercury Pathfinder Techniques: Base Metal and Uranium Deposits’, J. Geochem. Explor. 26, 1–117.

    Google Scholar 

  • Dall'AglioM. and FerraraG. C.: 1986, ‘Impatto Ambientale dell'Energia Geotermica’, Acqua e Aria 10, 1091–1101.

    Google Scholar 

  • DeDeurwaerderH., DecadtG. and BayensW.: 1982, ‘Estimations of Hg Fluxes Emitted by Mount Etna Volcano’, Bull. Vulcanol. 45, 191–196.

    Google Scholar 

  • DumareyR. and DamsR.: 1985, ‘The Influence of Metereological Parameters on Atmospheric Volatile and Particulate Mercury Distribution’, Environ. Pollut. 10, 277–285.

    Google Scholar 

  • FerraraR., PetrosinoA., MasertiB. E., SerittiA. and BarghigianiC.: 1982, ‘The Biogeochemical Cycle of Mercury in the Mediterranean. Part 2: Mercury in the Atmosphere, Aerosol and in Rainwater of a Northern Tyrrhenian Area’, Environ. Technol. Lett. 3, 449–456.

    Google Scholar 

  • FerraraR., MasertiB. E., PetrosinoA. and BargagliR.: 1986, ‘Mercury Levels in Rain and in Air and the Subsequent Washout Mechanism in a Central Italian Region’, Atmos. Environ. 20, 125–128.

    Google Scholar 

  • FerraraR., MasertiB. E. and BargagliR.: 1988, ‘Mercury in the Atmosphere and in Lichens in a Region Affected by a Geochemical Anomaly’, Environ. Technol. Lett. 9, 689–694.

    Google Scholar 

  • FitzgeraldW. F.: 1986, ‘Cycling of Mercury Between the Atmosphere and Oceans’, in P.Buat-Ménard (ed.), The Role of Air-Sea Exchange in Geochemical Cycling, Kluwer Acad. Publ., Dordrecht, pp. 363–408.

    Google Scholar 

  • FolkesonL.: 1979, Interspecies calibration of heavy-metal concentrations in nine mosses and lichens: applicability to deposition measurements. Water, Air, and Soil Pollut. 11, 253–260.

    Google Scholar 

  • HawksworthD. L. and RoseF.: 1976, Lichens as Pollution Monitors, Edward Arnold Publ., London, 59 pp.

    Google Scholar 

  • KlusmanR. W., CowlingS. S., CulveyB., RobertsC. and SchwabA. P.: 1977, ‘Preliminary Evaluation of Secondary Controls on Hg in Soil of Geothermal Districts’, Geothermics 6, 1–8.

    Google Scholar 

  • KlusmanR. W. and JaacksJ. A.: 1987, ‘Environmental Influences upon Mercury, Radon and Helium Concentrations in Soil Gases at a Site near Denver, Colorado’, J. Geochem. Explor. 27, 259–280.

    Google Scholar 

  • KovalevskiiA. L.: 1986, ‘Mercury-Biogeochemical Exploration for Mineral Deposits’, Biogeochemistry 2, 211–220.

    Google Scholar 

  • LantzyR. J. and MackenzieF. T.: 1979, ‘Atmospheric Trace Metals: Global Cycles and Assessment of Man's Impact’, Geochim. Cosmochim. Acta 43, 511–525.

    Google Scholar 

  • LindqvistO. and RodheH.: 1985, ‘Atmospheric Mercury—A Review’, Tellus 37, 136–159.

    Google Scholar 

  • MackenzieD.: 1984, ‘Mount Etna Might Be Source of Mediterranean Mercury’, New Scientist 103, 8.

    Google Scholar 

  • NriaguJ. O.: 1979, ‘Production and Uses of Mercury’, in J. O.Nriagu (ed.), The Biogeochemistry of Mercury in the Environment, Elsevier/North Holland Biomedical Press, Amsterdam, pp. 23–40.

    Google Scholar 

  • OlmezI., GulovaliM. C. and GordonG. E.: 1985, ‘Trace Element Concentrations in Lichen near a Coal-Fired Power Plant’, Atmos. Environ. 19, 1663–1669.

    Google Scholar 

  • PhelpD. and BuseckP. R.: 1980, ‘Distribution of Soil Mercury and the Development of Soil Mercury Anomalies in the Yellowstone Geothermal Area, WY’, Econ. Geol. 75, 730–741.

    Google Scholar 

  • ReimerG. M., DentonE. M., FriedmanI. and WottonJ. K.: 1979, ‘Recent Developments in Uranium Exploration Using the U.S. Geological Survey's Mobile Helium Detector’, J. Geochem. Explor. 11, 1–12.

    Google Scholar 

  • SiegelS. M. and SiegelB. Z.: 1975, ‘Geothermal Hazards. Mercury Emission’, Environ. Sci. Technol. 9, 473–474.

    Google Scholar 

  • SiegelS. M. and SiegelB. Z.: 1983, ‘Vegetation and the Atmospheric Cycling of Mercury’, Adv. Space Res. 3, 135–139.

    Google Scholar 

  • Siegel, B. Z. and Siegel, S. M.: 1987, ‘Hawaiian Volcanoes and the Biogeology of Mercury’, in R. Decker, T. Wright and P. Stauffer (eds.), Volcanism in Hawaii, U.S. Geol. Sur. Prof. Paper 1350, U.S. Gov't Print Off., pp. 822–839.

  • SlemrF., SchusterG. and SeilerW.: 1985, ‘Distribution, Speciation, and Budget of Atmospheric Mercury’, J. Atmos. Chem. 3, 407–434.

    Google Scholar 

  • VarekampJ. C. and BuseckP. R.: 1983, ‘Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas’, Geothermics 12, 29–47.

    Google Scholar 

  • VarekampJ. C. and BuseckP. R.: 1986, ‘Global Mercury Flux from Volcanic and Geothermal Sources’, Appl. Geochem. 1, 65–73.

    Google Scholar 

  • WeissH., BertineK., KoideM. and GoldbergE. D.: 1975, ‘The Chemical Composition of a Greenland Glacier’, Geochim. Cosmochim. Acta 39, 1–10.

    Google Scholar 

  • WeissbergB. G. and ZobelM. G. R.: 1973, ‘Geothermal Mercury Pollution in New Zealand. Bull. Environ. Contam. Toxicol. 9, 148–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bargagli, R., Barghigiani, C. Lichen biomonitoring of mercury emission and deposition in mining, geothermal and volcanic areas of Italy. Environ Monit Assess 16, 265–275 (1991). https://doi.org/10.1007/BF00397614

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397614

Keywords

Navigation