Skip to main content
Log in

Vacuoles: The sole compartments of digestive enzymes in yeast (Saccharomyces cerevisiae)?

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Almost all the vacuoles (about 95%) remained intact after “polybase-induced lysis” of the yeast protoplasts. These vacuoles could be sedimentated together with other cell organelles which were equally well preserved, leaving as a supernatant a cytosol fraction which was essentially uncontaminated by the contents of disrupted vacuoles. After density gradient centrifugation more than half of the vacuoles were recovered in a fraction which was highly purified as judged from the measurement of several marker enzymes and from light and electron microscopic observations. Polyphosphate, which has been shown to be located exclusively in the vacuolar sap of protoplasts, was used as a vacuolar marker to determine the yields of vacuoles in the different fractions obtained from the density gradients. It was also used to assess the overall distribution of lytic enzymes in the cytosol and in the vacuome.

The results indicate that the following enzyme activities are mostly, if not exclusively (>90%), located in the vacuome, probably all in the typical large vacuoles present in the protoplasts: exo-and endopolyphosphatase, proteases A and B, carboxypeptidase Y, an aminopeptidase, RNase, α-mannosidase, and phosphatases which hydrolyze a number of different substrates. The polyphosphatases are thus in the same compartment as the polyphosphate. The activities of some other hydrolases, notably of a Mg2+ dependent, Oligomycin and NaN3 insensitive ATPase and alkaline phosphatase, were partially associated with the vacuoles. The activities of pyrophosphatase, tripolyphosphatase, α-glucosidase, and aminopeptidase active in the presence of EDTA, were located almost exclusively in the soluble, cytosolic fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMPD:

2-amino-2-methyl-1,3-propanediol

BSA:

bovine serum albumin

BTNA:

N-benzoyl-L-tyrosine-p-nitroanilide

LeuNA:

leucine-p-nitroanilide

LysNA:

lysine-p-nitroanilide

PIPES:

pinerazine-N,N′-bis-2-ethanesulfonic acid

PP:

polyphosphate

Tri-PP:

tripolyphosphate

References

  • Ahlers, J., Ahr, E., Seyfrath, A.: Kinetic characterization of plasma membrane ATPase from Saccharomyces cerevisiae. Mol. C. Biochem. 22, 39–49 (1978)

    Google Scholar 

  • Ambellan, E., Hollander, V. P.: A simplified assay for RNase activity in crude tissue extracts. Anal. Biochem. 17, 474–484 (1966)

    PubMed  Google Scholar 

  • Bergmeyer, H. U. (ed.): Methods of enzymatic analysis. Weinheim: Verlag Chemie, pp. 673–678 (1974)

    Google Scholar 

  • Betz, H., Weiser, U.: Protein degradation during sporulation. Eur. J. Biochem. 70, 385–395 (1976)

    PubMed  Google Scholar 

  • Boller, Th., Dürr, M., Wiemken, A.: Characterization of a specific transport system for arginine in isolated yeast vacuoles. Eur. J. Biochem. 54, 81–91 (1975)

    PubMed  Google Scholar 

  • Boller, Th., Dürr, M., Wiemken, A.: Asymmetric distribution of Concanavalin A binding sites on yeast plasmalemma and vacuolar membrane. Arch. Microbiol. 109, 115–118 (1976)

    PubMed  Google Scholar 

  • Branton, D., Bullivant, S., Gilula, N. D., Karnovsky, M. J., Moor, H., Mühlethaler, K., Northcote, D. H., Packer, L., Satyr, B., Satyr, P., Speth, V., Staehelin, L. A., Steere, R. L., Weinstein, R. S.: Freeze-etching nomenclature. Science 190, 54–55 (1975)

    PubMed  Google Scholar 

  • Buser, Ch., Matile, Ph.: Malic acid in vacuoles isolated from Bryophyllum leaf cells. Z. Pflanzenphysiol 82, 462–466 (1977)

    Google Scholar 

  • Cabib, E., Ulane, R., Bowers, B.: Yeast chitin synthetase: separation of the zymogen from its activating factor and recovery of the latter in the vacuole fraction. J. Biol. Chem. 248, 1451–1458 (1973)

    PubMed  Google Scholar 

  • Cortat, M., Matile, Ph., Wiemken, A.: Isolation of glucanasecontaining vesicles from budding yeast. Arch. Mikrobiol. 82, 189–205 (1972)

    PubMed  Google Scholar 

  • Dürr, M., Boller, Th., Wiemken, A.: Polybase induced lysis of yeast spheroplasts. A new gentle method for preparation of vacuoles. Arch. Microbiol. 105, 319–327 (1975)

    PubMed  Google Scholar 

  • Dürr, M., Boller, Th., Wiemken, A.: Action of proteinases on the arginine transport of purified vacuoles from Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 73, 193–199 (1976)

    PubMed  Google Scholar 

  • Dürr, M., Urech, K., Boller, Th., Wiemken, A., Schwencke, J., Nagy, M.: Sequestration of arginine by polyphosphate in vacuoles of yeast (Saccharomyces cerevisiae). Arch. Microbiol. 121, 109–175 (1979)

    Google Scholar 

  • De Duve, C.: The lysosome in retrospect. In: Lysosome in biology and pathology (Dingle, J. T., Fell, H. B., eds.), Vol. 1, pp. 3–40. Amsterdam-London: North Holland Publ. Co. 1969

    Google Scholar 

  • Frey, J., Röhm, K.: Subcellular localization and levels of aminopeptidases and dipeptidases in Saccharomyces cerevisiae. Biochim. Biophys. Acta 527, 31–41 (1978)

    PubMed  Google Scholar 

  • Goldberg, A. L., Johns, A. C. St.: Intracellular protein degradation in mammalian and bacterial cells; part 2. Annu. Rev. Biochem. 45, 748–803 (1976)

    Article  Google Scholar 

  • Halvorson, H. O., Ellias, L.: The purification and properties of α-glucosidase of Saccharomyces italicus 1225. Biochim. Biophys. Acta 30, 28–40 (1958)

    Article  PubMed  Google Scholar 

  • Hasilik, A., Muller, H., Holzer, H.: Compartmentation of the tryptophansynthase-proteolyzing system in Saccharomyces cerevisiae. Eur. J. Biochem. 48, 111–117 (1974)

    Google Scholar 

  • Holzer, H., Betz, H., Ebner, E.: Function of intracellular proteinases in microorganisms. Curr Top Cell Regul 9, 103–156 (1975)

    PubMed  Google Scholar 

  • Huber-Wälchli, V., Wiemken, A.: Differential extraction of soluble pools from the cytosol and the vacuoles of yeast (Candida utilis) using DEAE-dextran. Arch. Microbiol. 120, 141–149 (1979)

    Google Scholar 

  • Jones, E. W.: Proteinase mutants of Saccharomyces cerevisiae. Genetics 85, 23–33 (1977)

    PubMed  Google Scholar 

  • Lenney, J. F.: Three yeast proteins that specifically inhibit yeast proteases A, B and C. J. Bacteriol. 122, 1265–1273 (1975)

    PubMed  Google Scholar 

  • Lenney, J., Matile, P., Wiemken, A., Schellenberg, M., Meyer, J.: Activities and cellular localization of yeast proteases and their inhibitors. Biochem. Biophys. Res. Comm. 60, 1378–1383 (1974)

    Google Scholar 

  • Liss, E., Langen, P.: Versuche zur Polyphosphat-Überkompensation in Hefezellen nach Polyphosphatverarmung. Arch. Microbiol. 41, 383–392 (1962)

    Google Scholar 

  • Martinoia, E., Heck, U., Boller, Th., Wiemken, A., Matile, Ph.: Some properties of vacuoles isolated from Neurospora crassa slime variant. Arch. Microbiol. 120, 31–34 (1979)

    PubMed  Google Scholar 

  • Matern, H., Betz, H., Holzer, H.: Compartmentation of inhibitors of proteinases A and B and carboxypeptidase Y in yeast. Biochem. Biophys. Res. Commun. 60, 1051–1059 (1974)

    PubMed  Google Scholar 

  • Matile, Ph., Wiemken, A.: The vacuole as the lysosome of the yeast cell. Arch. Mikrobiol. 56, 148–155 (1967)

    PubMed  Google Scholar 

  • Matile, Ph.: Utilization of peptides in yeast. Proceedings of the symposium on yeast, Bratislava 1966, S. 503–508, Publ. House of the Slovak Acad. of Sciences, Bratislava, 1969

    Google Scholar 

  • Matile, Ph., Wiemken, A., Guyer, W.: A lysosomal aminopeptidase isozyme in differentiating yeast cells and protoplasts. Planta (Berl.) 96, 43–53 (1971)

    Google Scholar 

  • Matile, Ph., Wiemken, A.: Interaction between cytoplasm and vacuole. In: Transport in plants III (C. R. Stocking, U. Heber, eds.), pp. 255–287. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  • Matile, Ph.: Biochemistry and function of vacuoles. Ann. Rev. Plant Physiol. 29, 193–213 (1978)

    Article  Google Scholar 

  • Mejbaum, W.: Über die Bestimmung kleiner Pentosemengen, insbesondere in Derivaten der Adenylsäure. Hoppe-Seyler's Z. physiol. Chem. 258, 117–120 (1939)

    Google Scholar 

  • Moor, H., Müller, M., Kistler, J.: Freezing in a propane jet. Experientia 32, 805 (1976)

    Google Scholar 

  • Neeff, J., Hägele, E., Nauhaus, U., Heer, U., Mecke, D.: Evidence for catabolite degradation in the glucose-dependent inactivation of yeast cytoplasmic malate dehydrogenase. Eur. J. Biochem. 87, 489–495 (1978)

    PubMed  Google Scholar 

  • Ohnishi, T., Gall, R. S., Mayer, M. L.: An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: Application to the ATPase assay in the presence of phosphocreatine. Anal. Biochem. 69, 261–267 (1975)

    PubMed  Google Scholar 

  • Peterson, G. L.: A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346 (1978)

    Google Scholar 

  • Polakis, E. S., Bartley, W.: Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. J. Biochem. 97, 284–297 (1965)

    Google Scholar 

  • Polakis, E. S., Bartley, W., Meek, G. A.: Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources. Biochem. J 97, 298–302 (1965)

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)

    Article  PubMed  Google Scholar 

  • Saheki, T., Holzer, H.: Proteolytic activites in yeast. Biochim. Biophys. Acta. 384, 203–214 (1975)

    PubMed  Google Scholar 

  • Segal, L. H.: Mechanism and regulation of protein turnover in animal cells. Curr. Top. Cell Regul. 11, 183–201 (1976)

    PubMed  Google Scholar 

  • Serrano, R.: Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae. Mol. C. Biochem. 22, 51–63 (1978)

    Google Scholar 

  • Susani, M., Zimniak, P., Fessl, F., Ruis, H.: Localization of catalase A in vacuoles of Saccharomyces cerevisiae: Evidence for the vacuolar nature of isolated “yeast peroxisomes”. Hoppe-Seyler's Z. Physiol. Chem. 357, 961–970 (1976)

    PubMed  Google Scholar 

  • Switzer, R. L.: In vivo inactivation of microbial enzymes. Annu. Rev. Microbiol. 31, 135–157 (1977)

    Article  PubMed  Google Scholar 

  • Urech, K., Dürr, M., Boller, Th., Wiemken, A., Schwencke, J.: Localization of polyphosphate in vacuoles of Saccharomyces cerevisiae. Arch. Microbiol. 116, 275–278 (1978)

    PubMed  Google Scholar 

  • Van der Wilden, W., Matile, Ph., Schellenberg, M., Meyer, J., Wiemken, A.: Vacuolar membranes: Isolation from yeast cells. Z. Naturforsch. 28c, 416–421 (1973)

    Google Scholar 

  • Wiemken, A.: Eigenschaften der Hefevakuole. Thesis. ETH Nr. 4340, Swiss Federal Institute Technol. Zürich (1969)

  • Wiemken, A., Matile, Ph., Moor, H.: Vacuolar dynamics in synchronously budding yeast. Arch. Microbiol. 70, 89–103 (1970)

    Google Scholar 

  • Wiemken, A., Dürr, M.: Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae. Arch. Microbiol. 101, 45–57 (1974)

    PubMed  Google Scholar 

  • Wiemken, A.: Isolation of vacuoles from yeast. In: Methods in cell biology, Vol. XII (D. M. Prescott, ed.), pp. 99–109. London: Academic Press 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiemken, A., Schellenberg, M. & Urech, K. Vacuoles: The sole compartments of digestive enzymes in yeast (Saccharomyces cerevisiae)?. Arch. Microbiol. 123, 23–35 (1979). https://doi.org/10.1007/BF00403499

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403499

Key words

Navigation