Skip to main content
Log in

Study by evolution of nucleic acid content of prepuberal growth in the shrimp Crangon vulgaris

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Growth of the shrimp Crangon vulgaris was studied by following the evolution of its nucleic acid concentration and total content. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) analysis were effected on homogenates of whole shrimps. Cell multiplication was estimated from evolution of total DNA content, and cell size increment from evolution of fresh weight: DNA ratio. DNA puric bases ratio and RNA monoribonucleotides percentages were constant throughout the investigation period. A decrease in DNA concentration was observed from 50 to 20 μM/g dry defatted weight (DDP), when fresh weight increases from 40 to 570 mg. This decrease was more marked in the first half of the period studied (prepuberal phase). The DNA content in the whole shrimp increases with fresh weight without slowing down at sexual maturity. However, at the beginning of the prepuberal phase the cell-multiplication rate seems to be graduated rather than continuous; this is still to be explained. Cell size, calculated from fresh weight: DNA ratio, increases until the shrimp weighs 300 mg; beyond this weight, cell increment proceeds much more slowly. The weight gain of shrimps throughout the growth period studied is mainly attributable to hyperplasia — which occurs constantly — while hypertrophy insures only 21% weight increment in the largest shrimps. As protein content, RNA content is a linear function of shrimp weight. RNA:DNA ratio evolution is similar to that of cell size and protein content. We suggest that cells have attained a physiological balance when shrimps reach a weight of 300 mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allen, W. V.: Amino acid and fatty acid composition of tissues of the Dungeness crab (Cancer magister). J. Fish. Res. Bd Can. 28, 1191–1195 (1971).

    Google Scholar 

  • Boivin, A., R. Vendrely et C. Vendrely: L'acide desozyribonucléique du noyau cellulaire, dépositaire des caractères héréditaires: arguments d'ordre analytique. C.r. hebd. Séanc. Acad. Sci., Paris 226, 1061–1062 (1948).

    Google Scholar 

  • Brachet, J.: Nucleocytoplasmic interactions in unicellular organisms. In: The cell, pp 771–841. Ed. by J. Brachet and A. E. Mirsky. New York: Academic Press 1961.

    Google Scholar 

  • Chandran, M. R. and R. G. Michäel: The ribonucleic acid content in the marine amphipod Talorchestia martensii. Comp. Biochem. Physiol. 27, 371–375 (1968).

    Google Scholar 

  • Chargaff, F. and R. Lipshitz: Composition of mammalian deoxyribonucleic acids. J. Am. chem. Soc. 75, 3658–3661 (1953).

    Google Scholar 

  • Cognie, D.: Contribution à l'étude de la biologie de Peneus kerathurus (Forskal) 1775, crustacé décapode — en fonction du cycle d'intermue, Thèse de Doctorat de Spécialité: Océanographie biologique. Université d'Aix-Marseille 1970.

  • Cuzon, G.: Elevage et alimentation artificielle de Crangon crangon, Palaemon serratus et Penaeus kerathurus, Thèse de Doctorat de Spécialité: Océanographie biologique. Université d'Aix-Marseille 1970.

  • Dagg, M. J. and J. L. Littlepage: Relationship between growth rate and RNA, DNA, protein and dry weight in Artemia salina and Euchaeta elongata. Mar. Biol. 17, 162–170 (1972).

    Google Scholar 

  • Davidson, J. N.: The biochemistry of nucleic acids, 248 pp. London: Methuen & Co. Ltd. New York: Wiley & Sons 1957.

    Google Scholar 

  • Devi, A. P., P. Lindsay and N. K. Sarkar: Synthesis and breakdown of proteins and ribonucleic acid in Tribolium confusum, Duval. Experientia 19, 344–345 (1963).

    PubMed  Google Scholar 

  • Drach, P.: Mue et cycle d'intermue chez les crustacés décapodes. Annls Inst. océanogr., Monaco 19, 103–391 (1939).

    Google Scholar 

  • — et C. Tchernigovtzeff: Sur les méthodes de détermination des stades d'intermue et son application générale aux crustacés. Vie Milieu (Sér. A) 18, 595–610 (1967).

    Google Scholar 

  • Durand, G., G. Fauconneau et E. Penot: Etude biochimique de la croissance de l'intestin grêle, du foie et de la carcasse du rat; rôles respectifs de la multiplication et du grandissement cellulaires. Annls Biol. anim. Biochim. Biophys. 5, 163–187 (1965).

    Google Scholar 

  • ———: Répartition des cellules entre les tissue du rat adulte, préalablement soumis à une sous-nutrition énergétique temporaire à deux stades de la croissance. Annls Biol. anim. Biochim. Biophys. 9, 55–73 (1969).

    Google Scholar 

  • Enesco, M.: Increase in number of nuclei and the mean cell size during post-natal growth of the heart of male Sherman rats. Anat. Rec. 133, p. 272 (1959).

    Google Scholar 

  • Fahrig, R. and F. Anders: The influence of glutamic acid upon the nucleic acid content of Drosophila melanogaster. Res. Notes (DIS) 43, p. 92 (1967).

    Google Scholar 

  • Gross, P. R.: The control of protein synthesis in embryonic development and differentiation. In: Current topics in developmental biology, Vol. 2. pp 1–46. Ed. by A. A. Moscona and A. Monroy. New York: Academic Press 1967.

    Google Scholar 

  • Hampshire, F. and D. H. S. Horn: Structure of crustecdysone, a crustacean moulting hormone. Chem. Commun. 2, 37–38 (1966).

    Google Scholar 

  • Hartenstein, R.: Nitrogen metabolism in non-insect arthropods. In: Comparative biochemistry of nitrogen metabolism. Vol. 1. The invertebrates, pp 299–385. Ed. by J. W. Campbell. London-New York: Academic Press 1970.

    Google Scholar 

  • Huggins, A. K. and K. A. Munday: Crustacean metabolism. Adv. comp. Physiol. Biochem. 3, 271–378 (1968).

    PubMed  Google Scholar 

  • Humphreys, C. R. and J. R. Stevenson: Changes in epidermal DNA, protein and protein synthesis during the molt cycle of the crayfish Orconectes sanborni (Faxon). Comp. Biochem. Physiol. 44A, 1121–1128 (1973).

    Google Scholar 

  • Kennell, D. and Magasanik: The relation of ribosome content to the rate of enzyme synthesis in Aerobacter aerogenes. Biochim. biophys. Acta 55, 139–151 (1962).

    Article  PubMed  Google Scholar 

  • Krishnakumaran, A. and H. A. Schneiderman: Control of molting in mandibulate and chelicerate arthropods by ecdysones. Biol. Bull. mar. biol. Lab., Woods Hole 139, 520–538 (1970).

    Google Scholar 

  • Lafon, M.: Nouvelles recherches biochimiques et physiologiques sur le squelette tégumentaire des crustacés. Bull. Inst. océanogr. Monaco 45, 1–28 (1948).

    Google Scholar 

  • Lang, C. A., H. Y. Lau and D. J. Jefferson: Protein and nucleic changes during growth and ageing in the mosquito. Biochem. J. 95, 372–377 (1965).

    PubMed  Google Scholar 

  • L'Hélias, C.: Chemical aspects of growth and development in insects. In: Chemical zoology, Vol. V. Part A. pp 343–400. Ed. by M. Florkin and B. T. Scheer. New York-London: Academic Press 1970.

    Google Scholar 

  • Luquet, P.: Etude des divers composés azotés des salmonidés: protéines, azote non protéique, acides nucléiques. Facteurs de variation. Annls Hydrobiol. 1, 111–132 (1970).

    Google Scholar 

  • —: Etude du développement chez la truite. Evolution de la teneur en acides nucléiques dans diverses fractions corporelles. Annls Biol. anim. Biochim. Biophys. 11, 657–668 (1971).

    Google Scholar 

  • — et G. Durand: Evolution de la teneur en acides nucléiques de la musculature épaxiale au cours de la croissance chez la truite arc-en-ciel (Salmo gairdnerii). Rôles respectifs de la multiplication et du grandissement cellulaires. Annls Biol. anim. Biochim. Biophys. 10, 481–492 (1970).

    Google Scholar 

  • Magasanik, B.: Isolation and composition of the pentose nucleic acids and of the corresponding nucleoproteins. In: The nucleic acids, chemistry and biology, Vol. 1. pp 373–407. Ed. by E. Chargass and J. N. Davidson. New York: Academic Press 1960.

    Google Scholar 

  • Mitlin, N.: The composition of ribonucleic acid in several holometabolous insects. Ann. ent. Soc. Am. 55, 104–105 (1962).

    Google Scholar 

  • Neulat, M. M.: Les variations de la teneur en acide desoxyribonucleique au cours de la pupaison chez Drosophila melanogaster. C. r. hebd. Séanc. Acad. Sci., Paris 253, 730–731 (1961).

    Google Scholar 

  • Nigon, V. and J. Daillie: La synthèse de l'acide desoxyribonucléique au cours du développement de la drosophile. Biochim. biophys. Acta 29, 246–255 (1958).

    PubMed  Google Scholar 

  • Pandian, T. J.: Changes in chemical composition and caloric contents of developing eggs of the shrimp Crangon crangon. Helgoländer wiss. Meeresunters. 16, 216–224 (1967).

    Google Scholar 

  • Price, G. M.: Nucleic acids in the larva of the blowfly Calliphora erythrocephala. J. Insect Physiol. 11, 869–878 (1965).

    Article  PubMed  Google Scholar 

  • Regnault, M.: Croissance au laboratoire de Crangon septemspinosa Say (Crustacea, Decapoda, Natantia) de la métamorphose à la maturité sexuelle. Bull. Mus. natn. Hist. nat., Paris (Sér. 2) 42, 1108–1126 (1970).

    Google Scholar 

  • Renaud, L.: Le cycle des réserves organiques chez les crustacés décapodes. Annls Inst. océanogr., Monaco 24, 259–357 (1949).

    Google Scholar 

  • Schmidt, G. and S. J. Tannhäuser: A method for the determination of deoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissues. J. biol. Chem. 116, 83–89 (1945).

    Google Scholar 

  • Skinner, D. M.: Breakdown and reformation of somatic muscle during the molt cycle of the land crab Gecarcinus lateralis. J. exp. Zool. 163, 115–124 (1966).

    PubMed  Google Scholar 

  • Stewart, J. R. and J. P. Green: Ecdysone mediated events in the molting of the fiddler crab Uca pugilator. Am. Zool. 9, p. 579 (1969).

    Google Scholar 

  • Sutcliffe, W. H.: Growth estimates from ribonucleic content in some small organisms. Limnol. Oceanogr. 10 (Suppl.), 253–258 (1965).

    Google Scholar 

  • —: Relationship between growth rate and ribonucleic acid concentration in some invertebrates. J. Fish. Res. Bd Can. 27, 606–609 (1969).

    Google Scholar 

  • Vickers, D. H. and N. Mitlin: Changes in nucleic acid content of the boll weevil Anthonomus grandis Boheman during its development. Physiol. Zoöl. 39, 70–76 (1966).

    Google Scholar 

  • Vinogradov, A. P.: The elementary chemical composition of marine organisms. Mem. Sears Fdn mar. Res. 2, 1–647 (1953).

    Google Scholar 

  • Yamaoka, L. H. and B. T. Scheer: Chemistry of growth and development in crustaceans. In: Chemical zoology, Vol. V. Part A. pp 321–341. Ed. by M. Florkin and B. T. Scheer. New York-London: Academic Press 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regnault, M., Luquet, P. Study by evolution of nucleic acid content of prepuberal growth in the shrimp Crangon vulgaris . Mar. Biol. 25, 291–298 (1974). https://doi.org/10.1007/BF00404971

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00404971

Keywords

Navigation