Skip to main content
Log in

Observations on centromeric heterochromatin and satellite DNA in salamanders of the genus Plethodon

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

DNA from Plethodon cinereus cinereus separates into two fractions on centrifugation to equilibrium in neutral CsCl. The smaller of these fractions has been described as a high-density satellite. It represents about 2% of nuclear DNA from this species, and it has a density of 1.728 g/cm3. It is cytologically localized near the centromeres of all 14 chromosomes of the haploid set. In P. c. cinereus the heavy satellite DNA constitutes about 1/4 of the DNA in centromeric heterochromatin. The nature of the rest of the DNA in centromeric heterochromatin is unknown. The number of heavy satellite sequences clustered around the centromeres in a chromosome from P. c. cinereus is roughly proportional to the size of the chromosome, as determined by in situ hybridization with satellite-complementary RNA, and autoradiography. Likewise the amount of contromeric heterochromatin, as identified by its differential stainability with Giemsa, shows a clear relationship to chromosome size. — The heavy satellite sequences identified in DNA from P. c. cinereus are also present in smaller amounts in other closely related forms of Plethodon. Plethodon cinereus polycentratus and P. richmondi have approximately half as many of these sequences per haploid genome as P. c. cinereus. P. hoffmani and P. nettingi shenandoah have about 1/3 as many of these sequences as P. c. cinereus. P. c. cinereus, P. c. polycentratus, and P. richmondii all have detectable heavy satellites with densities of 1.728 g/cm3. Among these forms, satellite size as determined by optical density measurements, and number of satellite sequences as determined from hybridization studies, vary co-ordinately. P. c. cinereus heavy satellite sequences are not detectable in P. nettingi, P. n. hubrichti, or P. dorsalis. The latter species has a heavy satellite with a density of 1.718 g/cm3, representing about 8% of the genomic DNA, and two light satellites whose properties have not been investigated. The heavy satellite of P. dorsalis is cytologically localized in the centromeric heterochromatin of this species. — These observations are discussed in relation to the function and evolution of highly repetitive DNA sequences in the centromeric heterochromatin of salamanders and other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beattie, W. G., Skinner, D. M.: The diversity of satellite DNAs of Crustacea. Biochim. biophys. Aota (Amst.) 281, 169–178 (1972).

    Google Scholar 

  • Bostock, C. J., Prescott, D. M., Hatch, F. T.: Timing of replication of the satellite and main band DNAs in cells of the kangeroo rat (Dipodomys ordii). Exp. Cell Res. 74, 487–495 (1972).

    PubMed  Google Scholar 

  • Britten, R. J., Davidson, E. H.: Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Quart. Rev. Biol. 46, 111–138 (1971)

    Article  PubMed  Google Scholar 

  • Britten, R. J., Kohne, D. E.: Repeated sequences in DNA. Science 161, 529–540 (1968)

    PubMed  Google Scholar 

  • Eckhardt, R. A., Gall, J. G.: Satellite DNA associated with heterochromatin in Rhynchosciara. Chromosoma (Berl.) 32, 407–427 (1971)

    Article  Google Scholar 

  • Flamm, W. G.: Highly repetitive sequences of DNA in chromosomes. Int. Rev. Cytol. 32, 1–51 (1972)

    PubMed  Google Scholar 

  • Flamm, W. G., Bond, H. E., Burr, H. E.: Density gradient centrifugation of DNA in a fixed angle rotor. Biochim. biophys. Acta (Amst.) 129, 310–317 (1966)

    Google Scholar 

  • Gall, J. G., Cohen, E. H., Polan, M. L.: Repetitive DNA sequences in Drosophila. Chromosoma (Berl.) 33, 319–344 (1971)

    Article  Google Scholar 

  • Gall, J. G., Macgregor, H. C., Kidston, M. E.: Gene amplification in the oocytes of dytiscid water beetles. Chromosoma (Berl.) 26, 169–187 (1969)

    Google Scholar 

  • Gall, J. G., Pardue, M. L.: Nucleic acid hybridization in cytological preparations. In: Methods in enzymology, vol. 21, part D, p. 470–480. New York-London: Academic Press 1971

    Google Scholar 

  • Gallagher, A., Hewitt, G., Gibson, I.: Differential Giemsa staining of heterochromatic B-chromosomes in Myrmeleotettix maculatus (Thunb.) (Orthopter: Acrididae). Chromosoma (Berl.) 40, 167–172 (1973)

    Article  Google Scholar 

  • Hatch, F. T., Mazrimas, J. A.: Satellite DNAs in the kangaroo rat. Biochim. biophys. Acta (Amst.) 224, 291–294 (1970)

    Google Scholar 

  • Hennig, W., Walker, P. M. B.: Variations in the DNA from two rodent families (Cricetidae and Muridae). Nature (Lond.) 225, 915–919 (1970)

    Google Scholar 

  • Highton, R.: Distributional interactions among eastern North American salamanders of the genus Plethodon. Research Division Monograph 4, p. 139–187. Blacksburg, Va.: Virginia Polytechnic Institute and State University 1972.

    Google Scholar 

  • Highton, R., Worthington, R. D.: A new salamander of the genus Plethodon from Virginia. Copeia (Wash.) 3, 617–626 (1967)

    Google Scholar 

  • Jones, K. W.: Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature (Lond.) 225, 912–915 (1970)

    Google Scholar 

  • Kit, S.: Equilibrium sedimentation in density gradients of DNA preparations from animal tissues. J. molec. Biol. 3, 711–716 (1961)

    PubMed  Google Scholar 

  • Laird, C. D., McConaughy, B. L., McCarthy, B. J.: Rate of fixation of nucleotide substitutions in evolution. Nature (Lond.) 224, 149–154 (1969)

    Google Scholar 

  • Macgregor, H. C., Kezer, J.: The chromosomal localization of a heavy satellite DNA in the testis of Phethodon c. cinereus. Chromosoma (Berl.) 33, 167–182 (1971)

    Article  Google Scholar 

  • Mazrimas, J. A., Hatch, F. T.: Intranuclear distribution of satellite DNA from the kangaroo rat. Exp. Cell Res. 63, 462–466 (1970)

    PubMed  Google Scholar 

  • Mazrimas, J. A., Hatch, F. T.: A possible relationship between satellite DNA and the evolution of kangaroo rat species (genus Dipodomys). Nature (Lond.) New Biol. 240, 102–105 (1972)

    Google Scholar 

  • Pardue, M. L., Gall, J. G.: Chromosomal localization of mouse satellite DNA. Science 168, 1356–1358 (1970)

    PubMed  Google Scholar 

  • Patau, K.: Absorption microphotometry of irregular shaped objects. Chromosoma (Berl.) 5, 341–362 (1952)

    Google Scholar 

  • Southern, E. M.: Base sequence and evolution of Guinea-pig satellite DNA. Nature (Lond.) 227, 794–798 (1970)

    Google Scholar 

  • Sumner, A. T.: A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972)

    PubMed  Google Scholar 

  • Swift, H.: Cytochemical techniques for nucleic acids. In: The nucleic acids (E. Chargaff and J. N. Davidson, eds.) vol. II, p. 51–92. New York: Academic Press 1955

    Google Scholar 

  • Thurow, G. R.: On the small black Plethodon problem. Series in the Biological Sciences, No 6, 1–48. Western Illinois University 1968

  • Wake, D. B.: Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem. S. Calif. Acad. Sci. 4, 1–111 (1966)

    Google Scholar 

  • Waring, M., Britten, R. J.: Nucleotide sequence repetition: a rapidly reassociating fraction of mouse DNA. Science 154, 791–794 (1966)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macgregor, H.C., Horner, H., Owen, C.A. et al. Observations on centromeric heterochromatin and satellite DNA in salamanders of the genus Plethodon . Chromosoma 43, 329–348 (1973). https://doi.org/10.1007/BF00406742

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406742

Keywords

Navigation