Skip to main content
Log in

Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

When Acetobacterium woodii was co-cultured in continuous or in stationary culture with Methanobacterium strain AZ, fructose instead of being converted to 3 mol of acetate was converted to 2 mol of acetate and 1 mol each of carbon dioxide and methane, showing that interspecies hydrogen transfer occurred. In continous culture the organisms formed a close physical association in clumps; the doubling time for each organism was 6h at 33°C. Methane mainly was derived from carbon positions 3 and 4 of the sugar, but other carbons also yielded methane; this was shown to be due to carbon dioxide-acetate exchange reactions by A. woodii in a manner similar to that carried out by Clostridium thermoaceticum. Four other methanogens, Methanobacterium M.o.H. and M.o.H. G, Methanobacterium formicicum, and Methanosarcina barkeri (not acetate-adapted) also produced similar results, when co-cultured with A. woodii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreesen, J. R., Schaupp, A., Neurauter, C., Brown, A., Ljungdahl, L. G.: Fermentation of glucose, fructose and xylose by Clostridium thermoaceticum: Effects of metals on growth yield, enzymes, and the synthesis of acetate from CO2. J. Bacteriol. 114, 743–751 (1973)

    PubMed  Google Scholar 

  • Balch, W. E., Schoberth, S., Tanner, R. S., Wolfe, R. S.: Acetobacterium a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Syst. Bacteriol. 27, 355–361 (1977)

    Google Scholar 

  • Balch, W. E., Wolfe, R. S.: New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environm. Microbiol. 32, 781–791 (1976)

    Google Scholar 

  • Balch, W. E., Wolfe, R. S.: Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J. Bacteriol. 137, 256–263 (1979)

    PubMed  Google Scholar 

  • Barker, H. A., Kamen, M. D.: Carbon dioxide utilization in the synthesis of acetate by Clostridium thermoaceticum. Proc. Natl. Acad. Sci. U.S.A. 31, 219–225 (1945)

    Google Scholar 

  • Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem. 1, 279–285 (1960)

    Google Scholar 

  • Bryant, M. P.: Microbiology of anaerobic degradation and methanogenesis with special reference to sewage. In: Microbial energy conversion, (H. G. Schlegel, J. Barnea, eds.), pp. 107–117. Göttingen: Erich Goltze KG, 1976

    Google Scholar 

  • Bryant, M. P., Campbell, L. L., Reddy, C. A., Crabill, M. R.: Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environm. Microbiol. 33, 1162–1169 (1977)

    Google Scholar 

  • Chen, M., Wolin, M. J.: Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Appl. Environm. Microbiol. 34, 756–759 (1977)

    Google Scholar 

  • Cooney, C. L., Ackerman, R. A.: Thermophilic anaerobic digestion of cellulosic waste. J. Appl. Microbiol. 2, 65–72 (1975)

    Google Scholar 

  • Fontaine, F. E., Peterson, W. H., McCoy, E., Johnson, M. J., Ritter, G. J.: A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J Bacteriol. 43, 701–715 (1942)

    Google Scholar 

  • Ferry, J. G., Wolfe, R. S.: Anaerobic degradation of benzoate to methane by a microbial consortium. Arch. Microbiol. 107, 33–40 (1976)

    PubMed  Google Scholar 

  • Jeris, J. S., McCarty, P. L.: Biochemistry of methane fermentation using 14C tracers. J. Water Poll. Contr. Fed. 37, 178–192 (1965)

    Google Scholar 

  • Kaspar, H. F., wuhrmann, K.: Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl. Environm. Microbiol. 36, 1–7 (1978)

    Google Scholar 

  • Latham, M. J., Wolin, M. J.: Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environm. Microbiol. 34, 297–301 (1977)

    Google Scholar 

  • McCarty, P. L., Young, L. Y., Gossett, J. M., Stuckey, D. C., Healy, J. B., Jr.: Heat treatment for increasing methane yields from organic materials. In: Microbial energy conversion, (H. G. Schlegel and J. Barnea, eds.), pp. 179–199. Göttingen: Erich Goltze KG 1976

    Google Scholar 

  • Miller, G. L.: Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)

    Google Scholar 

  • Rose, I. A., Grunberg-Manago, M., Korey, S. R., Ochoa, S.: Enzymatic phosphorylation of acetate. J. Biol. Chem. 211, 905–931 (1954)

    Google Scholar 

  • Schulman, M., Ghambeer, R. K., Ljungdahl, L., Wood, H. G.: Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chem. 248, 6255–6261 (1973)

    PubMed  Google Scholar 

  • Smith, P. H., Mah, R. A.: Kinetics of acetate metabolism during sludge digestion. Appl. Microbiol. 14, 368–371 (1966)

    PubMed  Google Scholar 

  • Smith, M. R., Mah, R. A.: Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl. Environm. Microbiol. 36, 870–879 (1978)

    Google Scholar 

  • Varel, V. H., Isaacson, H. R., Bryant, M. P.: Thermophilic methane production from cattle wastes. Appl. Environm. Microbiol. 33, 299–307 (1977)

    Google Scholar 

  • Weimer, P. J., Zeikus, J. G.: Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl. Environm. Microbiol. 33, 289–297 (1977)

    Google Scholar 

  • Winter, J., Wolfe, R. S.: Complete degradation of carbohydrates to CO2 and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri. Arch. Microbiol. 121, 97–102 (1979)

    PubMed  Google Scholar 

  • Wood, H. G.: A study of carbon dioxide fixation by mass determination of the types of 13C-acetate. J. Biol. Chem. 194, 905–931 (1952)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, J.U., Wolfe, R.S. Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbiol. 124, 73–79 (1980). https://doi.org/10.1007/BF00407031

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00407031

Keywords

Navigation