Skip to main content
Log in

Einbau von 32P in verschiedene Phosphatfraktionen, besonders Polyphosphate, bei einzelligen Grünalgen (Ankistrodesmus braunii) im Licht und im Dunkeln

Incorporation of 32P into various phosphate compounds, especially into inorganic polyphosphates, in unicellular green alga (Ankistrodesmus braunii) in light and in darkness

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

Using the unicellular green alga, Ankistrodesmus braunii, distribution and turnover of phosphorus in various fractions of cell material were investigated with special reference to the formation of inorganic polyphosphates (Poly-P).

  1. 1.

    The whole P-compounds in Ankistrodesmus cells were fractionated by the modified Schmidt and Thannhauser methods which were applied by Kanai et al. (1965) for the quantitative separation of various inorganic polyphosphates in Chlorella ellipsoidea. The inorganic polyphosphates in Ankistrodesmus cells were also successfully separated from each other by successive extractions with cold 10% TCA (Poly-P “A”), with cold KOH at pH 9 (Poly-P “B”), and with 2n-KOH (Poly-P's “C” and “D”; the former precipitates on neutralization, leaving the latter in solution).

  2. 2.

    Analysis of the uniformly 32P-labeled algal cells showed that the highest in P-content was four kinds of poluphosphates (“A” + “B” + “C” + “D” = ca. 60% of total P) followed by RNA, lipid, acid soluble organic compounds, inorganic orthophosphate, DNA and protein in decreasing order.

  3. 3.

    The pool-size of each polyphosphate changed characteristically during the synchronous growth of Ankistrodesmus cells by changing light and darkness periodically (14 hr L: 10 hr D). The amounts of Poly-P's “B” and “D” increased soon after the beginning of light period, whereas the increase of Poly-P's “A” and “C” occurred at the latter stage of light period. In the dark period, the algal cells were divided synchronously. Correspondingly DNA and lipid-P increased, whereas Poly-P's “A” and “B” (and acid soluble organic P-compounds, as well) decreased. Poly-P “C”, on the other hand, did not show any significant change in darkness.

  4. 4.

    Using the Ankistrodesmus cells which were pre-cultured in a P-free medium for about 20 hrs, the rapid incorporation of radioactivity into various P-compounds was followed in the short time-course (0–15 min) by introducing 32PO 4 in light and in darkness. Radioactivity in inorganic orthophosphate within the algal cells and labile nucleotide phosphate increased rapidly and saturated in 5–10 min both in light and in darkness. The rapid increase of 32P in Poly-P's “C” and “D” and RNA was observed 5–10 min after the addition of 32P; these P-compounds were labeled much faste in light than in darkness.

    The highest light-enhancement of 32P-incorporation was found in non-nucleotide P-components of the acid soluble organic compounds (probably, in sugar phosphate esters). The radioactivity in these compounds incorporated after 2 min in light was found to be 10 times greater than that in darkness.

    Poly-P's “A” and “B” were not labeled in light and in darkness during the course of the short time experiment.

  5. 2.

    It is suggested from the short term experiments and others that the synthetic pathways of Poly-P's “C” and “D” are different from those of Poly-P's “A” and “B”; the former Poly-P's are synthesized rapidly in light from inorganic phosphate through the intermediary products such as labile nucleotides and/or sugar phosphates.

Zusammenfassung

Es wurde die Verteilung und der turnover von Phosphat in verschiedenen aus einzelligen Grünalgen (Ankistrodesmusbraunii) gewonnenen Fraktionen unter besonderer Berücksichtigung der Bildung von anorganischem Polyphosphat (Poly-P) untersucht.

  1. 1.

    Die Fraktionierung der gesamten P-Verbindungen in Ankistrodesmus-Zellen wurde mit einer von Kanai u. Mitarb. (1965) veränderten Methode nach Schmidt u. Thannhauser vorgenommen. Auch die anorganischen Polyphosphate wurden in aufeinanderfolgenden Extraktionen in 4 Fraktionen (Poly-P “A” bis “D”) aufgetrennt (vgl. Methodik).

  2. 2.

    Die 4 Poly-P-Fraktionen besaßen mit etwa 60% den größten Phosphatanteil. Mit abfallendem Mengenanteil folgten RNS, Lipoid-Phosphat, säurelösliche organische P-Verbindungen, anorganisches Orthophosphat, DNS und Proteinphosphat.

  3. 3.

    Die Pool-Größen der 4 Poly-P-Fraktionen änderten sich charakteristisch während des synchronen Wachstums (14 Std L: 10 Std Du) der Ankistrodesmus-Zellen. Poly-P “B” und “D” erhöhten sich gleich nach Beginn der Lichtperiode, “A” und “C” erst später. In der Dunkelperiode, während der synchronen Teilung der Zellen, stieg DNS und Lipoid-P an, während Poly-P “A” und “B” abfiel. Poly-P “C” zeigte während der Dunkelperiode keine Änderung.

  4. 4.

    Weiterhin wurde in Kurzzeitversuchen (0–15 min) die Einlagerung von 32PO 4 in die verschiedenen Fraktionen aus den P-frei vorkultivierten Algen (20 Std) verfolgt. Unter anderem war die Markierung von Poly-P “C”, “D” und RNS 5–10 min nach 32P-Zugabe im Licht viel stärker als im Dunkeln. Poly-P “A” und “B” wurden während der Kurzzeitversuche weder im Licht noch im Dunkeln markiert.

  5. 5.

    Es kann angenommen werden, daß die Synthesewege der Poly-P “A” und “B” von denen der Poly-P “C” und “D” verschieden sind. “C” und “D” werden offenbar im Licht auf den Weg über Intermediärprodukte, wie labile Nucleotide und/oder Zuckerphosphate, gebildet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

Adenosintriphosphat

DNS:

Desoxyribonucleinsäure

P:

Phosphat

Pi:

anorganisches Orthophosphat

Poly-P:

anorganisches Poly-phosphat

RNS:

Ribonucleinsäure

TES:

Trichloressigsäure

Literatur

  • Aoki, S., and S. Miyachi: Chromatographic analyses of acid-soluble polyphosphates in Chlorella cells. Plant and Cell Physiol. 5, 241–250 (1964).

    Google Scholar 

  • Arnon, D. I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).

    Google Scholar 

  • Baker, A. L., and R. R. Schmidt: Intracellular distribution of phosphorus during synchronous growth of Chlorella pyrenoidosa. Biochim. biophys. Acta (Amst.) 74, 75–83 (1963).

    Article  Google Scholar 

  • Harold, F.M.: Inorganic polyphosphates in biology: structure, metabolism, and function. Bact. Rev. 30, 772–794 (1966).

    PubMed  Google Scholar 

  • Iwamura, T.: Change of nucleic acid content in Chlorella cells during the course of their life-cycle. J. Biochem. (Tokyo) 42, 575–589 (1955).

    Google Scholar 

  • Kanai, R., S. Aoki, and S. Miyachi: quantitative separation of inorganic polyphosphates in Chlorella cells. Plant and Cell Physiol. 6, 467–473 (1965).

    Google Scholar 

  • —, and S. Miyachi: Light induced formation and mobilization of polyphosphate “C” in Chlorella cells. In: Studies on microalgae and photopolyphosphate “C” in Chlorella cells, pp. 613–618. Sonderausgabe der Plant and Cell Physiol., Tokyo 1963.

    Google Scholar 

  • Kuhl, A.: Die Biologie der Kondensierten anorganischen Phosphate. Ergebn. Biol. 23, 144–186 (1960).

    Google Scholar 

  • Langen, P., u. E. Liss: Über Bildung und Umsatz der Polyphosphate der Hefe. Biochem. Z. 330, 455–466 (1958).

    PubMed  Google Scholar 

  • —— u. K. Lohmann: Art, Bildung und Umssatz der Polyphosphate der Hefe. In: Acides ribonucléiques et polyphosphates: structure, synthèse et fonctions, pp. 603–612. Ed. C.N.R.S., Paris 1962.

    Google Scholar 

  • Lohmann, K., u. L. Jendrassik: Kolorimetrische Phosphorsäurebestimmungen im Muskelextrakt. Biochem. Z. 178, 419–426 (1926).

    Google Scholar 

  • Miyachi, S.: Turnover of phosphate compounds in Chlorella cells under phosphate deficiency in darkness. Plant and Cell Physiol. 3, 1–4 (1962).

    Google Scholar 

  • —, and S. Aoki: Metabolic roles of inorganic polyphosphates in Chlorella cells. Biochim. biophys. Acta (Amst.) 93, 625–634 (1964).

    Google Scholar 

  • —, and S. Miyachi: Modes of formation of phosphate compounds and their turnover in Chlorella cells during the process of life cycle as studied by the technique of synchronous culture. Plant and Cell Physiol. 2, 415–424 (1961).

    Google Scholar 

  • —, and H. Tamiya: Distribution and turnover of phosphate compounds in growing Chlorella cells. Plant and Cell Physiol. 2, 405–414 (1961).

    Google Scholar 

  • Nihei, T.: A phosphorylative process, accompanied by photochemical liberation of oxygen, occurring at the stage of nuclear division in Chlorella cells. I. and II. J. Biochem. (Tokyo) 42, 245–256 (1955); 44, 389–396 (1957).

    Google Scholar 

  • Pirson, A., u. H. G. Ruppel: Über die Induktion einer Teilungshemmung in synchronen Kulturen von Chlorella. Arch. Mikrobiol. 42, 299–309 (1962).

    PubMed  Google Scholar 

  • Santarius, K. A., and U. Heber: Changes in the intracellular levels of ATP, ADP, AMP and Pi and regulatory function of the adenylate system in leaf cells during photosynthesis. Biochim. biophys. Acta (Amst.) 102, 39–54 (1965).

    Google Scholar 

  • ——, and W. Urbach: Intracellular translocation of ATP, ADP and inorganic phosphate in leaf cells of Elodea densa in relation to photosynthesis. Biochem. biophys. Res. Commun. 15, 139–146 (1964).

    Google Scholar 

  • Schmidt, R. R.: Intracellular control of enzyme synthesis and activity during synchronous growth of Chlorella. In: Cell synchrony, pp. 189–235. Ed. I. L. Cameron and G. M. Padilla. New York: Academic Press 1966.

    Google Scholar 

  • Simonis, W.: Zyklische und nichtzyklische Photophosphorylierung in vivo. Sonderabdruck aus den Berichten der Deutschen Botanischen Gesellschaft 80, 80, 395 bis 402 (1967).

    Google Scholar 

  • —, u. W. Urbach: Untersuchungen zur lichtabhängigen Phosphorylierung bei Ankistrodesmus braunii IX. Beeinflussung durch Phosphatkonzentrationen, Tempertur, Hemmstoffe, Na+-Ionen und Vorbelichtung. In: Studies on Microalgae and Photosynthetic Bacteria, pp. 597–611. Sonderausgabe der Plant and Cell Physiol., Tokyo 1963.

    Google Scholar 

  • Urbach, W., and W. Simonis: Inhibitor studies on the photophosphorylation in vivo by unicellular algae (Ankistrodesmus) with Antimycin a, HOQNO, salycylaldoxime and DCMU. Biochem. biophys. Res. Commun. 17, 39–45 (1964).

    Google Scholar 

  • Wintermans, J. F. G. M.: Polyphosphate formation in Chlorella in relation to photosynthesis. Meded. van de Landbouwhogesch. te Wageningen (nederland) 55, 69–126 (1955).

    Google Scholar 

  • —: On the formation of polyphosphates in Chlorella in relation to conditions for photosynthesis. Proc. Kon. Ned. Akad. Wed. (Amst.) C57, 574–583 (1954).

    Google Scholar 

  • Yanagita, T.: Successive determinations of the free, acid-labile and residual phosphates in biological systems. J. Biochem. (Tokyo) 55, 260–268 (1964).

    Google Scholar 

  • Zaitseva, G. N., A. N. Belozerskii, and L. P. Novozhilova: Phosphorus compounds in developing cultures Azotobacter vinelandii. Biokhimiya 24, 971–982 (1959).

    Google Scholar 

  • ———: A study of the phosphorus compunds in the development of Azotobacter vinelandii using 32P. Biokhimiya 25, 198–210 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanai, R., Simonis, W. Einbau von 32P in verschiedene Phosphatfraktionen, besonders Polyphosphate, bei einzelligen Grünalgen (Ankistrodesmus braunii) im Licht und im Dunkeln. Archiv. Mikrobiol. 62, 56–71 (1968). https://doi.org/10.1007/BF00407053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00407053

Navigation