Skip to main content
Log in

Complete degradation of carbohydrate to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Methanosarcina barkeri (strain MS) grew and converted acetate to CO2 and methane after an adaption period of 20 days. Growth and metabolism were rapid with gas production being comparable to that of cells grown on H2 and CO2. After an intermediary growth cycle under a H2 and CO2 atmosphere acetateadapted cells were capable of growth on acetate with formation of methane and CO2. When acetate-adapted Methanosarcina barkeri was co-cultered with Acetobacterium woodii on fructose or glucose as substrate, a complete conversion of the carbohydrate to gases (CO2 and CH4) was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CMC:

carboxymethyl cellulose

References

  • Balch, W. E., Schoberth, S., Tanner, R. S., Wolfe, R. S.: Acetobacterium, a new genus of hydrogen-oxidizing carbon dioxide-reducing anaerobes. Int. J. Syst. Bacteriol. 27, 355–361 (1977)

    Google Scholar 

  • Balch, W. E., Wolfe, R. S.: New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Env. Microbiol. 32, 781–791 (1976)

    Google Scholar 

  • Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem. 1, 279–285 (1960)

    Google Scholar 

  • Chen, M., Wolin, M. J.: Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Appl. Env. Microbiol. 34, 756–759 (1977)

    Google Scholar 

  • Ferry, J. G., Wolfe, R. S.: Anaerobic degradation of benzoate to methane by a microbial consortium. Arch. Microbiol. 107, 33–40 (1976)

    Google Scholar 

  • Fina, L. R., Bridges, R. L., Coblentz, T. H., Roberts, F. F.: The anaerobic decomposition of benzoic acid during methane fermentation. III. The fate of carbon four and the identification of propanoic acid. Arch. Microbiol. 118, 169–172 (1978)

    Google Scholar 

  • Hungate, R. E.: A roll tube method for the cultivation of strict anaerobes. In: Methods in Microbiology, Vol. 3B (J. R. Norris, D. W. Ribbons, eds.), pp. 117–132. New York-London: Academic Press 1969

    Google Scholar 

  • Jeris, J. S., McCarty, P. L.: The biochemistry of methane fermentation using 14C-tracers. J. Water Pollut. Control. Fed. 37, 178–192 (1965)

    Google Scholar 

  • Keith, C. L., Bridges, R. L., Fina, L. R., Iverson, L. R., Cloran, J. A.: The anaerobic decomposition of benzoic acid during methane fermentation. IV. Dearomatization of the ring and volatile fatty acids formed on ring rupture. Arch. Microbiol. 118, 173–176 (1978)

    Google Scholar 

  • Latham, M. J., Wolin, M. J.: Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Env. Microbiol. 34, 297–301 (1977)

    Google Scholar 

  • Mah, R. A., Smith, M. R., Baresi, L.: Studies on an acetate-fermenting strain of Methanosarcina. Appl. Env. Microbiol. 35, 1174–1184 (1978)

    Google Scholar 

  • Miller, G. L.: Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)

    Google Scholar 

  • Rose, I. A., Grunberg-Manago, M., Korey, S. R., Ochoa, S.: Enzymatic phosphorylation of acetate. J. Biol. Chem. 211, 737–756 (1954)

    Google Scholar 

  • Sineriz, F., Pirt, S. J.: Methane production from glucose by a mixed culture of bacteria in the chemostat: the role of Citrobacter. J. Gen. Microbiol. 101, 57–64 (1977)

    Google Scholar 

  • Smith, P. H., Mah, R. A.: Kinetics of acetate metabolism during sludge digestion. Appl. Microbiol. 14, 368–371 (1966)

    Google Scholar 

  • Van den Berg, L., Patel, G. B., Clark, D. S., Lentz, C. P.: Factors affecting rate of methane formation from acetic acid by enriched methanogenic cultures. Can. J. Microbiol 22, 1312–1319 (1975)

    Google Scholar 

  • Weimer, P. J., Zeikus, J. G.: Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl. Env. Microbiol. 33, 289–297 (1977)

    Google Scholar 

  • Wood, H. G.: A study of carbon dioxide fixation by mass determination of the types of C13-acetate. J. Biol. Chem. 194, 905–931 (1952)

    Google Scholar 

  • Zeikus, J. G., Weimer, P. J., Nelson, D. R., Daniels, L.: Bacterial Methanogenesis: acetate as a methane precursor in pure culture. Arch. Microbiol. 104, 129–134 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, J., Wolfe, R.S. Complete degradation of carbohydrate to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri . Arch. Microbiol. 121, 97–102 (1979). https://doi.org/10.1007/BF00409211

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409211

Key words

Navigation