Skip to main content
Log in

Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Of eleven substituted phenoxyacetic acids tested, only three (2,4-dichloro-, 4-chloro-2-methyl- and 2-methylphenoxyacetic acid) served as growth substrates for Alcaligenes eutrophus JMP 134. Whereas only one enzyme seems to be responsible for the initial cleavage of the ether bond, there was evidence for the presence of three different phenol hydroxylases in this strain. 3,5-Dichlorocatechol and 5-chloro-3-methylcatechol, metabolites of the degradation of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid, respectively, were exclusively metabolized via the ortho-cleavage pathway. 2-Methylphenoxyacetic acid-grown cells showed simultaneous induction of meta- and ortho-cleavage enzymes. Two catechol 1,2-dioxygenases responsible for ortho-cleavage of the intermediate catechols were partially purified and characterized. One of these enzymes converted 3,5-dichlorocatechol considerably faster than catechol or 3-chlorocatechol. A new enzyme for the cycloisomerisation of muconates was found, which exhibited high activity against the ring-cleavage products of 3,5-dichlorocatechol and 4-chlorocatechol, but low activities against 2-chloromuconate and muconate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MCPA:

4-chloro-2-methylphenoxyacetic acid

2MPA:

2-methylphenoxyacetic acid

PA:

phenoxyacetic acid

References

  • Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505

    Google Scholar 

  • Beadle CA, Smith ARW (1982) The purification and properties of 2,4-dichlorophenol hydroxylase from a strain of Acinetobacter species. Eur J Biochem 123:323–332

    Google Scholar 

  • Bollag JM, Helling CS, Alexander M (1968a) 2,4-D metabolism: Enzymatic hydroxylation of chlorinated phenols. J Agr Food Chem 16:826–828

    Google Scholar 

  • Bollag J, Briggs GG, Dawson JE, Alexander M (1968b) 2,4-D metabolism: Enzymatic degradation of chlorocatechols. J Agr Food Chem 16:829–833

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Dagley S (1978) Pathways for the utilization of organic growth substrates. In: Gunsalus LC (ed) The bacteria, vol VI, Bacterial diversity. Academic Press, New York, pp 305–388

    Google Scholar 

  • Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686

    Google Scholar 

  • Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorbenzoate in Alcaligenes eutrophus JMP 134 (pJP4). J Bacteriol 161:85–96

    Google Scholar 

  • Dorn E, Knackmuss HJ (1978a) Chemical structure and biodegradability of halogenated aromatic compounds: two catechol 1,2-dioxygenases from a 3-chlorobenzoate grown Pseudomonad. Biochem J 174:73–84

    Google Scholar 

  • Dorn E, Knackmuss HJ (1978b) Chemical structure and biodegradability of halogenated aromatic compounds: substituent effects on 1,2-dioxygenation of catechol. Biochem J 174:85–94

    Google Scholar 

  • Dorn E, Hellwig M, Reineke W, Knackmuss HJ (1974) Isolation and characterization of a 3-chlorobenzoate degrading Pseudomonad. Arch Microbiol 99:61–70

    Google Scholar 

  • Evans WC, Smith BSW, Moss P, Fernley HN (1971a) Bacterial metabolism of 4-chlorophenoxyacetate. Biochem J 122: 509–517

    Google Scholar 

  • Evans WC, Smith BSW, Fernley HN, Davies JI (1971b) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J 122:543–552

    Google Scholar 

  • Friedrich B, Meyer M, Schlegel HG (1983) Transfer and expression of the herbicide-degrading plasmid pJP4 in aerobic autotrophic bacteria. Arch Microbiol 143:92–97

    Google Scholar 

  • Gaal AB, Neujahr HY (1980) Maleylacetate reductase from Trichosporum cutaneum. Biochem J 185:783–786

    Google Scholar 

  • Gamar Y, Gaunt JK (1971) Bacterial metabolism of 4-chloro-2-methylphenoxyacetate (MCPA): formation of glyoxylate by side-chain cleavage. Biochem J 122:527–531

    Google Scholar 

  • Gaunt JK, Evans WC (1971a) Metabolism of 4-chloro-2-methylphenoxyacetate by a soil Pseudomonad: preliminary evidence for the metabolic pathway. Biochem J 122:519–526

    Google Scholar 

  • Gaunt JK, Evans WC (1971b) Metabolism of 4-chloro-2-methylphenoxyacetate by a soil Pseudomonad: ring fission, lactonizing and delactonizing enzymes. Biochem J 122:533–542

    Google Scholar 

  • Hartmann J, Reineke W, Knackmuss HJ (1979) Metabolism of 3-chloro-, 4-chloro- and 3,5-dichlorobenzoate by a Pseudomonad. Appl Environ Microbiol 37:421–428

    Google Scholar 

  • Hopper DJ, Chapman PJ (1971) Gentisic acid and its 3- and 4-methylsubstituted analogues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol. Biochem J 122:19–28

    Google Scholar 

  • Hopper DJ, Taylor DG (1975) Pathways for the degradation of m-cresol and p-cresol in Pseudomonas putida. J Bacteriol 122:1–6

    Google Scholar 

  • Horvath RS (1970) Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase. Biochem J 119:871–876

    Google Scholar 

  • Jeenes DJ, Reineke W, Knackmuss HJ, Williams PA (1982) TOL plasmid pWWO in constructed halobenzoate-degrading Pseudomonas strains: enzyme regulation and DNA structure. J Bacteriol 150:180–187

    Google Scholar 

  • Kaminski U, Janke D, Prauser H, Fritsche W (1983) Degradation of aniline and monochloroanilines by Rhodococcus sp. An 117 and a Pseudomonad: a comparative study. Z Allg Microbiol 22:235–246

    Google Scholar 

  • Keat MJ, Hopper DJ (1978) p-Cresol and 3,5-xylenol methyl-hydroxylases in Pseudomonas putida N.C.I.B. 9869. Biochem J 175:649–658

    Google Scholar 

  • Kilpi S, Backström V, Korhola M (1983) Degradation of catechol, methylcatechols and chlorocatechols by Pseudomonas sp. HV3. FEMS Microbiol Lett 18:1–5

    Google Scholar 

  • Klecka GM, Gibson DT (1981) Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165

    Google Scholar 

  • Latorre J, Reineke W, Knackmuss HJ (1984) Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch Microbiol 140:159–165

    Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Google Scholar 

  • Liu T, Chapman PJ (1984) Purification and properties of a plasmidencoded 2,4-dichlorophenol hydroxylase. FEBS Lett 173: 314–318

    Google Scholar 

  • Loos MA, Roberts RN, Alexander M (1967) Phenols as intermediates in the decomposition of phenoxyacetates by an Arthrobacter sp. Can J Microbiol 13:679–690

    Google Scholar 

  • McIntire W, Hopper DJ, Singer TP (1985) p-Cresol methyl-hydroxylases: assay and general properties. Biochem J 228:325–335

    Google Scholar 

  • Miller DJ (1981) Toluate metabolism in nocardioform Actinomycetes: utilization of the enzymes of the 3-oxoadipate pathway for the degradation of methyl-substituted analogues. In: Schaal KP, Pulverer G (eds) Actinomycetes, Zbl Bakt Suppl 11. Fischer, Stuttgart New York, pp 355–361

    Google Scholar 

  • Murray K, Duggleby CJ, Sala-Trepat JM, Williams PA (1972) The metabolism of benzoate and methylbenzoates via the metacleavage pathway by Pseudomonas arvilla mt-2. Eur J Biochem 28:301–310

    Google Scholar 

  • Nakazawa T, Yokota T (1973) Benzoate metabolism in Pseudomonas putida (arvilla) mt-2: demonstration of two benzoate pathways. J Bacteriol 115:262–267

    Google Scholar 

  • Nozaki M (1970) Metapyrocatechase (Pseudomonas). In: Tabor H, Tabor CW (eds) Methods in enzymology, vol 17A. Academic Press, New York, pp 522–525

    Google Scholar 

  • Ornston LN (1966) The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. J Biol Chem 241:3787–3794

    Google Scholar 

  • Pieper DH (1986) Metabolismus von substituierten Phenoxyacetaten, Phenolen and Benzoaten durch Alcaligenes eutrophus JMP 134 and Derivate. Dissertation, Universität Wuppertal

  • Pieper DH, Engesser KH, Don RH, Timmis KN, Knackmuss HJ (1985) Modified ortho-cleavage pathway in Alcaligenes eutrophus JMP 134 for the degradation of 4-methylcatechol. FEMS Microbiol Lett 29:63–67

    Google Scholar 

  • Powlowski JB, Dagley S (1985) β-Ketoadipate pathway in Trichosporum cutaneum modified for methyl-substituted metabolites. J Bacteriol 163:1126–1135

    Google Scholar 

  • Reineke W, Knackmuss HJ (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B 13 derivatives. J Bacteriol 142:467–473

    Google Scholar 

  • Reineke W, Knackmuss HJ (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzenedegrading bacterium. Appl Environ Microbiol 47:395–402

    Google Scholar 

  • Reineke W, Jeenes DJ, Williams PJ, Knackmuss HJ (1982) TOL plasmid pWWO in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway. J Bacteriol 150:195–201

    Google Scholar 

  • Rubio MA, Engesser KH, Knackmuss HJ (1986) Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange. Arch Microbiol 145:116–122

    Google Scholar 

  • Sala-Trepat JM, Murray K, Williams PA (1972) The metabolic divergence in the meta-cleavage of catechols by Pseudomonas putida NCIB 10015: physiological significance and evolutionary implications. Eur J Biochem 28:347–356

    Google Scholar 

  • Schmidt E, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds: conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192:339–347

    Google Scholar 

  • Schmidt E, Remberg G, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds: halogenated muconic acids as intermediates. Biochem J 192:331–337

    Google Scholar 

  • Schmidt K, Liaaen Jensen S, Schlegel HG (1963) Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch Mikrobiol 46:117–126

    Google Scholar 

  • Schreiber A, Hellwig M, Dorn E, Reineke W, Knackmuss HJ (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B 13. Appl Environ Microbiol 39:58–67

    Google Scholar 

  • Sharpee KW, Duxbury JM, Alexander M (1973) 2,4-Dichlorophenoxyacetate metabolism by Arthrobacter sp.: accumulation of a chlorobutenolide. Appl Microbiol 26:445–447

    Google Scholar 

  • Streber WR, Timmis KN, Zenk MH (1987) Analysis, cloning and high-level expression of 2,4-dichlorophenoxyaceteate monooxygenase gene tfdA of Alcaligenes eutrophus JMP 134. J Bacteriol 169:2950–2955

    Google Scholar 

  • Surovtseva EG, Volnova AI (1981) 4-Chlorocatechol, and inhibitor of pyrocatechol 2,3-dioxygenase in Alcaligenes faecalis. Microbiologiya 50:386–388

    Google Scholar 

  • Tiedje JM, Alexander M (1969) Enzymatic cleavage of the ether bond of 2,4-dichlorophenoxyacetate. J Agr Food Chem 17:1080–1084

    Google Scholar 

  • Tiedje JM, Duxbury JM, Alexander M, Dawson JE (1969) 2,4-D metabolism: pathway of degradation of chlorocatechols by Arthrobacter sp. J Agr Food Chem 17:1021–1026

    Google Scholar 

  • Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423

    Google Scholar 

  • Winnacker K, Küchler L (1972) Chemische Technoloogie, Band 4, Organische Technologie. Hanser, München

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieper, D.H., Reineke, W., Engesser, KH. et al. Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch. Microbiol. 150, 95–102 (1988). https://doi.org/10.1007/BF00409724

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409724

Key words

Navigation