Skip to main content
Log in

Heterotrophic nitrification by Arthrobacter sp. (strain 9006) as influenced by different cultural conditions, growth state and acetate metabolism

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

An Arthrobacter sp. (strain 9006), isolated from lake water, accumulated nitrite up to about 15 mg N/l, but no nitrate. In a mineral medium supplemented with tryptone, yeast extract, acetate and ammonium, the cells released nitrite into the medium parallel to growth or when growth had virtually ceased. The nitrite formed was proportional to the initial acetate concentration, indicating an involvement of acetate metabolism with nitrification. The organism grew with a wide variety of organic carbon sources, but washed cells formed nitrite from ammonium only in the presence of citrate, malate, acetate or ethanol. Magnesium ions were required for nitrification of ammonium and could not be replaced by other divalent metal ions. Analysis of the glyoxylate cycle key enzymes in washed suspensions incubated in a minimal medium revealed that isocitrate lyase and malate synthase were most active during the nitrification phase. Nitrite accumulation but not growth was inhibited by glucose, tryptone and yeast extract. A possible explanation for the different nitrification patterns during growth is based on the regulatory properties of glyoxylate cycle enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IL:

Isocitrate lyase [threo-Ds-isocitrate glyoxylate-lase, E.C. 4.1.3.1.]

MS:

malate synthase [l-malate glyoxylate-lyase (CoA-acetylating), E.C. 4.1.3.2.]

References

  • Alexander, M., Marshall, K. C., Hirsch, P.: Autotrophy and heterotrophy in nitrification. Proc. Comm. III, 7th Intern. Congr. Soil Sci., Madison, Wisc., pp. 586–591 (1960)

  • Aleem, M. I. H.: Oxidation of inorganic nitrogen compounds. Ann. Rev. Plant Physiol. 21, 67–90 (1970)

    Google Scholar 

  • Aleem, M. I. H., Lees, H., Lyric, R.: Ammonium oxidation by cell-free extracts of Aspergillus wentii. Can. J. Biochem. 42, 980–998 (1964)

    Google Scholar 

  • Amarger, N., Alexander, M.: Nitrite formation from hydroxylamine and oximes by Pseudomonas aeruginosa. J. Bacteriol. 95, 1651–1657 (1968)

    Google Scholar 

  • Czensny, R.: Wasser-, Abwasser- und Fischereichemie, 2. Aufl. Leipzig, Deutscher Verlag für Grundstoffchemie 1956

    Google Scholar 

  • Dixon, G. H., Kornberg, H. L.: Assay methods for key enzymes of the glyoxylate cycle. Biochem. J. 72, 3P (1959)

  • Donawa, A., Inniss, W. E.: Metabolic activity of acetate-grown Bacillus megaterium KM. Can. J. Microbiol. 16, 1199–1203 (1970)

    Google Scholar 

  • Doxtader, K. G., Alexander, M.: Nitrification by growing and replacement cultures of Aspergillus. Can. J. Microbiol. 12, 807–815 (1966a)

    Google Scholar 

  • Doxtader, K. G., Alexander, M.: Nitrification by heterotrophic soil microorganisms. Soil Sci. Soc. Am. Proc. 30, 351–354 (1966b)

    Google Scholar 

  • Doxtader, K. G., Alexander, M.: Role of 3-nitropropanoic acid in nitrate formation by Aspergillus flavus. J. Bacteriol 91, 1186–1191 (1966c)

    Google Scholar 

  • Eylar, O. R. Jun., Schmidt, E. L.: A survey of heterotrophic microorganisms from soil for ability to form nitrite and nitrate. J. Gen. Microbiol. 20, 473–481 (1959)

    Google Scholar 

  • Fisher, T., Fisher, E., Appleman, M. D.: Nitrite production by heterotrophic bacteria. J. Gen. Microbiol. 14, 238–247 (1956)

    Google Scholar 

  • Flavell, R. B., Fincham, J. R. S.: Acetate non-utilizing mutants of Neurospora crassa. II. Biochemical deficiencies and the roles of certain enzymes. J. Bacteriol. 95, 1063–1068 (1968)

    Google Scholar 

  • Focht, D. D., Verstraete, W.: Biochemical ecology of nitrification and denitrification. In: Advances in microbial ecology, Vol. 1 (M. Alexander, ed.), pp. 135–214, New York, London: Plenum Press 1977

    Google Scholar 

  • Gode, P., Overbeck, J.: Untersuchungen zur heterotrophen Nitrifikation im See. Z. allg. Mikrobiol. 12, 567–574 (1972)

    Google Scholar 

  • Gunner, H. B.: Nitrification by Arthrobacter globiformis. Nature (Lond.) 197, 1127–1128 (1963)

    Google Scholar 

  • Hanozet, G. M., Guerritore, A.: Role of phosphoenolpyruvate and 6-phosphogluconate in the short-term control of yeast isocitrate lyase. Arch. Biochem. Biophys. 149, 127–135 (1972)

    Google Scholar 

  • Hirsch, P., Overrein, L., Alexander, M.: Formation of nitrite and nitrate by actinomycetes and fungi. J. Bacteriol. 82, 442–448 (1961)

    Google Scholar 

  • Holz, G., Bergmeyer, H. U.: Acetat: Bestimmung mit Acetatkinase und Hydroxylamin. In: Methoden der enzymatischen Analyse, Bd. 2, 2. Aufl. (H. U. Bergmeyer, ed.), pp. 1486–1490. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Hylin, J. W., Matsumoto, H.: The biosynthesis of 3-nitropropanoic acid by Penicillium atrovenetum. Arch. Biochem. Biophys. 93, 542–545 (1960)

    Google Scholar 

  • Kleber, H.-P., Müller, E.: Regulation der Isozitratlyase von Pseudomonas aeruginosa durch Carnitinmetabolite. Acta Biol. Med. Ger. 25, 749–756 (1970)

    Google Scholar 

  • Kornberg, H. L.: The role and control of the glyoxylate cycle in Escherichia coli. Biochem. J. 99, 1–11 (1966)

    Google Scholar 

  • Loveless, J. E., Painter, H. A.: The influence of metal ion concentrations and pH value on the growth of a Nitrosomonas strain isolated from activated sludge. J. Gen. Microbiol. 52, 1–14 (1968)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Marshall, K. C., Alexander, M.: Nitrification by Aspergillus flavus. J. Bacteriol. 83, 572–578 (1962)

    Google Scholar 

  • Obaton, M., Amarger, N., Alexander, M.: Heterotrophic nitrification by Pseudomonas aeruginosa. Arch. Mikrobiol 63, 122–132 (1968)

    Google Scholar 

  • O'Neill, J. G., Wilkinson, J. F.: Oxidation of ammonia by methane-oxidizing bacteria and the effects of ammonia on methane oxidation. J. Gen. Microbiol. 100, 407–412 (1977)

    Google Scholar 

  • Verstraete, W., Alexander, M.: Heterotrophic nitrification by Arthrobacter sp. J. Bacteriol. 110, 955–961 (1972a)

    Google Scholar 

  • Verstraete, W., Alexander, M.: Mechanism of nitrification by Arthrobacter sp. J. Bacteriol. 110, 962–967 (1972b)

    Google Scholar 

  • Wolfson, P., Krulwich, T. A.: Inhibition of isocitrate lyase: The basis for inhibition of growth of two Arthrobacter species by pyruvate. J. Bacteriol. 112, 356–364 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witzel, K.P., Overbeck, H.J. Heterotrophic nitrification by Arthrobacter sp. (strain 9006) as influenced by different cultural conditions, growth state and acetate metabolism. Arch. Microbiol. 122, 137–143 (1979). https://doi.org/10.1007/BF00411352

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00411352

Key words

Navigation