Skip to main content
Log in

A note on residual drop and single drop formation

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

Volume ratios of the residual and detached parts of drops, determined experimentally are compared with those predicted theoretically by Lohnstein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

capillary constant \(\left( {\frac{{2\sigma }}{{\Delta \rho g}}} \right)^{\tfrac{1}{2}}\)

b :

radius of curvature at the apex of a pendant drop

B :

function defined in the text H/(H+H R)

d :

outside nozzle diameter

d i :

inside nozzle diameter 2r

e :

dimension defined in Fig. 2

d e :

maximum horizontal diameter of a pendant drop

f :

term defined by (10)

g :

acceleration due to gravity

h :

height of the head of attached liquid defined in Fig. 3

H :

Harkins-Brown correction factor

H R :

function defined in (7)

L :

length of nozzle

R 0 :

radius of curvature at the tip of the nozzle

t F :

time of drop formation

V :

volume of pendant drop

\(\dot V\) :

volume flow rate at nozzle

V M :

volume of maximum pendant drop

V F :

volume of detached drop

V R :

volume of residual drop

X :

term defined by (6)

σ :

interfacial tension

μ D, C :

viscosity of dispersed or continuous phase, respectively

ρ D :

density of dispersed phase

Δρ :

difference in densities of both phases

ϕ :

angle between the tangent of drop contour and the horizontal plane at the tip of the nozzle

References

  1. Lohnstein, T., Ann. Physik 20 (1906) 237 and 606.

    MATH  Google Scholar 

  2. Bashforth, F. and J. C. Adams, An attempt to test the theories of capillary action. Cambridge University Press 1883.

  3. Grigar, K., J. Procházka, and J. Landau, Chem. Eng. Sci. 25 (1970) 1773.

    Article  Google Scholar 

  4. Freud, B. B. and W. D. Harkins, J. Phys. Chem. 33 (1929) 1217.

    Article  Google Scholar 

  5. Harkins, W. D. and F. E. Brown, J. Am. Chem. Soc. 41 (1919) 499.

    Article  Google Scholar 

  6. Harkins, W. D., The physical chemistry of surface films, Reinhold, New York 1952.

    Google Scholar 

  7. Lando, J. L. and H. T. Oakley, J. Coll. Interface Sci. 25 (1967) 526.

    Article  Google Scholar 

  8. Sheele, G. F. and B. J. Meister, A.I.CH.E. J. 14 (1968) 9.

    Google Scholar 

  9. Hayworth, C. B. and R. E. Treybal, Ind. Eng. Chem. 42 (1950) 1174.

    Article  Google Scholar 

  10. Null, H. R. and H. F. Johnson, A.I.CH.E. J. 4 (1958) 273.

    Google Scholar 

  11. Heertjes, P. M. and L. H. Nie, Chem. Eng. Sci. 26 (1971) 441 and 451.

    Article  Google Scholar 

  12. Dunken, H., Ann. Physik 41 (1942) 567.

    Google Scholar 

  13. Tyroler, G., A. E. Hamielec, A. I. Johnson, and B. P. Leclair, Can. J. Chem. Eng. 49 (1971) 56.

    Article  Google Scholar 

  14. Halligan, J. E. and L. E. Burkhart, A.I.CH.E. J. 14 (1968) 411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacek, V., Nekovář, P. A note on residual drop and single drop formation. Appl. Sci. Res. 28, 134–144 (1973). https://doi.org/10.1007/BF00413062

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413062

Keywords

Navigation