Skip to main content
Log in

Rayleigh problem in slip flow with transverse magnetic field

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

An analytical continuum solution of the Rayleigh problem in slip flow with applied magnetic field is obtained using a modified initial condition and slip boundary conditions. The results are uniformly valid for all times and show that the velocity slip and the local skin friction coefficient remain almost unaffected by the imposition of the magnetic field for small times. They increase however with the magnetic field for large times. The present results reduce to the corresponding results of the hydrodynamic case when there is no magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant

b :

characteristic length

B :

magnetic field vector

B 0 :

magntidue of the applied magnetic field normale to the plate

B x :

magnitude of the induced magnetic field parallel to the plate

C :

slip coefficient, (2−f)/f

C f :

skin friction coefficient, \(\frac{{\mu \left( {\frac{{\partial u}}{{\partial y}}} \right)_{y = 0} }}{{\tfrac{1}{2}\rho U^2 }}\)

C D :

average drag coefficient

erfc(x):

complementary error function, \(1 - \frac{2}{{\pi ^{\tfrac{1}{2}} }}\int\limits_0^x {e^{ - \eta ^2 } d\eta }\)

E :

electric field vector

f :

Maxwell's reflection coefficient

H a :

Hartmann number, (σB 20 b 2/μ)1/2

\(\overline H _a = Kn H_a\) :

nondimensional magnetic parameter

J :

current vector

Kn=L/b :

Knudsen number

L :

mean free path

M :

Mach number

p :

constant parameter

P m :

magnetic Prandtl number, Re m/Re=μ 0 σν

q :

velocity vector

Re :

Reynolds number, Ub/ν

Re m :

magnetic Reynolds number, μ 0 σUb

t :

time

\(\bar t\) :

nondimensional time, tU/b

u :

velocity of the fluid parallel to the plate

ū :

nondimensional velocity, u/U

U :

velocity of the plate

\(\bar V\) :

Laplace transform of ū

x, y :

coordinates along and normal to the plate respectively

y:

nondimensional distance, y/b

Z :

nondimensional parameter, 1/Re 1/2 Kn

γ :

ratio of specific heats

δ :

boundary layer thickness

Δū :

velocity slip

μ :

viscosity

μ 0 :

magnetic permeability

ν :

kinematic viscosity

ξ :

nondimensional time parameter, (\(\bar t\)/Re)1/2/Kn

ρ :

density

σ :

electrical conductivity

References

  1. Schaaf, S. A., A note on flat plate drag coefficient, University of California, Institute of Engineering Research, M.E. 150–66, 1950.

  2. Russo, E. P. and O. A. Arnas, ASME Trans., J. Appl. Mech. 34 (1967) 837.

    Google Scholar 

  3. Gross, E. P. and E. A. Jackson, Phys. Fluids 1 (1958) 318.

    Google Scholar 

  4. Yang, H. T. and L. Lees, Rarefied Gas Dynamics, Pergamon Press Inc., New York, 1960.

    Google Scholar 

  5. Sone, Y., J. Phys. Soc. Japan 19 (1964) 1463.

    Google Scholar 

  6. Cercignani, C. and F. Sernagiotto, Rarefied Gas Dynamics, Academic Press, New York, 1965.

    Google Scholar 

  7. Reddy, K. C., ASME Trans., J. Appl. Mech. 34 (1967) 833.

    Google Scholar 

  8. Rossow, Y. J., On flow of an electrically conducting fluid over a flat plate in the presence of transverse magnetic field, NASA Report No. 1358, 1958.

  9. Chang, C. C. and J. T. Yen, Phys. Fluids 2 (1959) 393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, G. Rayleigh problem in slip flow with transverse magnetic field. Appl. Sci. Res. 23, 315–323 (1971). https://doi.org/10.1007/BF00413207

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413207

Keywords

Navigation