Skip to main content
Log in

Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Five strains of rod-shaped, Gram-negative, non-sporing, strictly anaerobic bacteria were isolated from limnic and marine mud samples with gallic acid or phloroglucinol as sole substrate. All strains grew in defined mineral media without any growth factors; marine isolates required salt concentrations higher than 1% for growth, two freshwater strains only thrived in freshwater medium. Gallic acid, pyrogallol, 2,4,6-trihydroxybenzoic acid, and phloroglucinol were the only substrates utilized and were fermented stoichiometrically to 3 mol acetate (and 1 mol CO2) per mol with a growth yield of 10g cell dry weight per mol of substrate. Neither sulfate, sulfur, nor nitrate were reduced. The DNA base ratio was 51.8% guanine plus cytosine. A marine isolate, Ma Gal 2, is described as type strain of a new genus and species, Pelobacter acidigallici gen. nov. sp. nov., in the family Bacteroidaceae. In coculture with Acetobacterium woodii, the new isolates converted also syringic acid completely to acetate. Cocultures with Methanosarcina barkeri converted the respective substrates completely to methane and carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association Inc. (Ed) (1969) In: Standard methods for the examination of water and waste-water including bottom sediments and sludge. New York pp 604–609

  • Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261

    Google Scholar 

  • Bergmeyer HU (1965) Methods of enzymatic analysis. Verlag Chemie Weinheim, Germany

    Google Scholar 

  • Buchanan RE, Gibbons NE (1974) Bergey's manual of determinative bacteriology, 8th ed Williams and Wilkins Co, Baltimore

    Google Scholar 

  • Dagley S (1975) A biochemical approach to some problems of environmental pollution. Essays in Biochemistry 11:81–138

    Google Scholar 

  • De Ley J (1970) Reexamination of the association between melting point, buoyant density and the chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754

    Google Scholar 

  • Donnelly MJ, Chapman PJ, Dagley S (1981) Bacterial degradation of 3,4,5-trimethoxyphenylacetic and 3-ketoglutaric acids. J Bacteriol 147:477–481

    Google Scholar 

  • Duncan CL, Strong DH (1968) Improved medium for sporulation of Clostridium perfringens. Appl Microbiol 16:82–89

    Google Scholar 

  • Dutton PL, Evans WC (1969) The metabolism of aromatic compounds by Rhodopseudomonas palustris Biochem J 113:525–536

    Google Scholar 

  • Evans WC (1977) Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature (London) 270:17–22

    Google Scholar 

  • Ferry JG, Wolfe RS (1976) Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiol 107:33–40

    Google Scholar 

  • Fina LR, Bridges RL, Coblentz TH, Roberts FF (1978) The anaerobic decomposition of benzoic acid during methane formation. III. The fate of carbon four and the identification of propanoic acid. Arch Microbiol 118:169–172

    Google Scholar 

  • Groseclose EE, Ribbons DW (1981) Metabolism of resorcinylic compounds by bacteria: new pathway for resorcinol catabolism in Azotobacter vinelandii. J Bacteriol 146:460–466

    Google Scholar 

  • Guyer M, Hegeman G (1969) Evidence for a reductive pathway for the anaerobic metabolism of benzoate. J Bacteriol 99:906–907

    Google Scholar 

  • Healy JB Jr, Young LY (1978) Catechol and phenol degradation by a methanogenic population of bacteria. Appl Environ Microbiol 35:216–218

    Google Scholar 

  • Healy JB, Young LY (1979) Anaerobic biodegradation of eleven aromatic compounds to methane. Appl environ Microbiol 38:84–89

    Google Scholar 

  • Healy JB, Young LY, Reinhard M (1980) Methanogenic decomposition of ferulic acid, a model lignin derivative. Appl Environ Microbiol 39:436–444

    Google Scholar 

  • Hollaus F, Sleytr U (1972) On the taxonomy and fine structure of some hyperthermophilic saccharolytic clostridia Arch Mikrobiol 86:129–146

    Google Scholar 

  • Keith CL, Bridges RL, Fina LR, Iverson KL, Cloran JA (1978) The anaerobic decomposition of benzoic acid during methane formation. IV. Dearomatization of the ring and volatile fatty acids formed on ring rupture. Arch Microbiol 118:173–176

    Google Scholar 

  • Magee CM, Rodeheaver G, Edgerton MT, Edlich RF (1975) A more reliable gram staining technic for diaguosis of surgical infections. Am J Surg 130:341–346

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Google Scholar 

  • Ornston LN, Stanier RY (1966) The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. J Biol Chem 241:3776–3786

    Google Scholar 

  • Pachmayr F (1960) Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser. Thesis Univ München

  • Patel TR, Jure KG, Jones GA (1981) Catabolism of phloroglucinol by the rumen anaerobe Coprococcus. Appl Environ Microbiol 42:1010–1017

    Google Scholar 

  • Pfennig N (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288

    Google Scholar 

  • Pfennig N, Eimhjellen KE, Liaaen-Jensen S (1965) A new isolate of the Rhodospirillum fulvum group and its photosynthetic pigments. Arch Mikrobiol 51:258–266

    Google Scholar 

  • Pridham JB (1965) Low molecular weigh phenols in higher plants. Ann Rev Plant Physiol 16:13–36

    Google Scholar 

  • Simpson FY, Jones GA, Wolin EA (1969) Anaerobic degradation of some bioflavonoids by microflora of the rumen. Can J Microbiol 15:972–974

    Google Scholar 

  • Stouthamer AH (1979) The search for correlation between theoretical and experimental growth yields. In: International review of biochemistry, microbial biochemistry, Vol 21, JR Quayle (ed) University Park Press Baltimore, pp 1–47

    Google Scholar 

  • Tarvin D, Buswell AM (1934) The methane formation of organic acids and carbohydrates. J Am Chem Soc 56:1751–1755

    Google Scholar 

  • Taylor BF, Heeb MJ (1972) The anaerobic degradation of aromatic compounds by a denitrifying bacterium. Arch Mikrobiol 83:165–171

    Google Scholar 

  • Tsai CG, Gates DM, Ingledew WM, Jones GA (1976) Products of anaerobic phloroglucinol degradation by Coprococcus sp. Pe15. Can J Microbiol 22: 159–164

    Google Scholar 

  • Tsai CG, Jones GA (1975) Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation. Can J Microbiol 21:794–801

    Google Scholar 

  • Whittle PJ, Lunt DO, Evans WC (1976) Anaerobic photometabolism of aromatic compounds by Rhodopseudomonas sp. Biochem Soc Trans 4:490–491

    Google Scholar 

  • Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Thesis, Göttingen

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfatereducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:295–400

    Google Scholar 

  • Williams RJ, Evans WC (1975) The metabolism of benzoate by Moraxella species through anaerobic nitrate respiration. Evidence for a reductive pathway. Biochem J 148:1–10

    Google Scholar 

  • Zeikus JG (1980) Fate of lignin and related aromatics in anaerobic environments. In: Lignin biodegradation: Microbiology, chemistry and potential applications Kirk T, Higushi T, Chung HM (eds) CRC Press, Boca Raton, pp 101–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schink, B., Pfennig, N. Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133, 195–201 (1982). https://doi.org/10.1007/BF00415000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00415000

Key words

Navigation