Skip to main content
Log in

Degradation patterns and intermediates in the anaerobic digestion of glucose: Experiments with 14C-labeled substrates

  • Physiology and Growth
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A mineral salts medium containing 1% (w/v) glucose was subjected to anaerobic digestion in an upflow reactor. Performance with respect to utilization of glucose was monitored by collection of fermentation gases and calculation of carbon mass balances. Sub-samples of bacterial supennsions from the upflow reactor were incubated with (U-14C)-glucose, (U-14C)-acetate, (2-14C)-propionate, (1-14C)-butyrate or 14C-carbonate. Individual radioactive products in samples from incubation mixtures were analysed by radio gas chromatography.

Quantitatively, acetate and propionate were the only important intermediates in glucose degradation by glucose-adapted sludge, with acetate accounting for the largest part of intermediary fatty acid flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

Adenosine Triphosphate

TIC:

Total Inorganic Carbon

TOC:

Total Organic Carbon

VFA:

Volatile Fatty Acids

References

  • Aergmeyer H. U. 1974. Methoden der enzymatischen analyse. Vol. 2 — Verlag Chemie, Weinheim.

    Google Scholar 

  • Aoone D. R. and Aryant M. P. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. — Appl. Environ. Microbiol. 40: 626–632.

    Google Scholar 

  • Aryant M. P., Wolin E. A., Wolin M. J. and Wolfe R. S. 1967. Methanobacillus omelianskii a symbiotic association of two species of bacteria. — Arch. Microbiol. 59: 20–31.

    Google Scholar 

  • Cappenberg Th. E. 1980. Use of radio gaschromatography in studying breakdown processes of organic matter in aquatic ecosystems. p. 55–60. In: Agrochemical residue-biota interactions in soil and aquatic ecosystems. — International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Cappenberg Th. E. and Prins R. A. 1974. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. III. Experiments with 14C-labeled substrates. — Antonie van Leeuwenhoek 40: 457–469.

    Google Scholar 

  • Chung K. T. 1976. Inhibitory effects of H2 on growth of Clostridium cellobioparum. — Appl. Environ. Microbiol. 31: 342–348.

    Google Scholar 

  • Chynoweth D. P. and Mah R. A. 1977. Bacterial populations and end products during anaerobic sludge fermentation of glucose. — J. Water Poll. Control Fed. 49: 405–412.

    Google Scholar 

  • Cohen A., Areure A. M., van Andel J. G. and van Deursen A. 1980. Influence of phase separation on the anaerobic digestion of glucose. I. Maximum COD-turnover rate during continuous operation. — Water Res. 14: 1439–1448.

    Google Scholar 

  • Cohen A., Areure A. M., van Andel J. G. and van Deursen A. 1982. Influence of phase separation on the anaerobic digestion of glucose. II. Stability, and kinetic responses to shock loadings. — Water Res. 16: 449–455.

    Google Scholar 

  • Cohen A., Zoetemeyer R. J., van Deursen A. and van Andel J. G. 1979. Anaerobic digestion of glucose with separated acid production and methane formation. — Water Res. 13: 571–580.

    Google Scholar 

  • Gottschalk G. and Andreesen J. R. 1979. Energy metabolism in anaerobes. — Int. Rev. Biochem. 21: 85–115.

    Google Scholar 

  • Hungate R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. — Arch. Microbiol. 59: 158–164.

    Google Scholar 

  • Jeris J. S. and McCarty P. L. 1965. The biochemistry of methane fermentation using C14 tracers. — J. Water Pollut. Control. Fed. 37: 178–192.

    Google Scholar 

  • Kaspar H. F. and Wuhrmann K. 1978. Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. — Appl. Environ. Microbiol. 36: 1–7.

    Google Scholar 

  • Knox K. L., Alack A. L. and Kleiber M. 1967. Some kinetic characteristics of rumen short-chain fatty acids as measured by the isotope dilution method. — J. Diary Sci. 50: 1716–1720.

    Google Scholar 

  • Lawrence A. W. 1971. Application of process kinetics to design of anaerobic processes, p. 163–189. In R. F.Gould (ed). Advances in chemistry series 105. — American Chemical Society, Washington D.C.

    Google Scholar 

  • Lescure, J. P. et Bourlet, P. 1979. Epuration des eaux de sucrerie par fermentation methanique mesophile. p. 71–114. Proc. XVI Assemblé Générale de la Commission Internationale Technique de Sucrerie.

  • Lettinga G., van Velsen A. F. M., Hobma S. W., de Zeeuw W. and Klapwijk A. 1980. Use of the Upflow Sludge Blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. — Biotechnol. Bioeng. 22: 699–734.

    Google Scholar 

  • Mackie R. I. and Aryant M. P. 1981. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60°C. — Appl. Environ. Microbiol. 41: 1363–1373.

    Google Scholar 

  • Mahr I. 1969. Untersuchungen über die Rolle der niederen Fettsäuren beim anaeroben Faulprozess und Einblicke in seine Biozönose. — Water Res. 3: 507–517.

    Google Scholar 

  • McInerney M. J., Aryant M. P. and Pfennig N. 1979. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. — Arch. Microbiol. 122: 129–135.

    Google Scholar 

  • Pohland F. G. and Aloodgood D. E. 1963. Laboratory studies on mesophilic and thermophilic anaerobic sludge digestion. — J. Water Pollut. Control Fed. 35: 11–42.

    Google Scholar 

  • Rufener W. H. and Wolin M. J. 1969. Effect of CCl4 on CH4 and volatile acid production in continuous cultures of rumen organisms and in a sheep rumen. — Appl. Microbiol. 16: 1955–1956.

    Google Scholar 

  • Scheifinger C. C., Linehan B. and Wolin M. J. 1975. H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria. — Appl. Microbiol. 29: 480–483.

    Google Scholar 

  • Smith P. H. and Mah R. A. 1966. Kinetics of acetate metabolism during sludge digestion. —Appl. Microbiol. 14: 368–371.

    Google Scholar 

  • Thauer R. K., Jungermann K. and Decker K. 1977. Energy conservation in chemotrophic anaerobic bacteria. — Bacteriol. Rev. 41: 100–180.

    Google Scholar 

  • Van Nevel C. J., Henderickx H. K., Demeyer D. I. and Martin J. 1969. Effect of chloral hydrate on methane and propionic acid in the rumen. — Appl. Microbiol. 17: 695–700.

    Google Scholar 

  • Walker D. J. and Monk P. R. 1971. Fate of carbon passing through the glucose pool of rumen digesta. — Appl. Microbiol. 22: 741–747.

    Google Scholar 

  • Winfrey M. R., Nelson D. R., Klevickis S. C. and Zeikus J. G. 1977. Association of hydrogen metabolism with methanogenesis in Lake Mendota sediments. — Appl. Environ. Microbiol. 33; 312–318.

    Google Scholar 

  • Wolin M. J. 1974. Metabolic interactions among intestinal microorganisms. — Am. J. Clin. Nutr. 27: 1320–1328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research described in this publication was supported by the Dutch Ministry of Public Health and Environmental Protection.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, A., van Deursen, A., van Andel, J.G. et al. Degradation patterns and intermediates in the anaerobic digestion of glucose: Experiments with 14C-labeled substrates. Antonie van Leeuwenhoek 48, 337–352 (1982). https://doi.org/10.1007/BF00418287

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418287

Keywords

Navigation