Skip to main content
Log in

Analysis of class I introns in a mitochondrial plasmid associated with senescence of Podospora anserina reveals extraordinary resemblance to the Tetrahymena ribosomal intron

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Recently, the nucleotide sequences for three “mitochondrial plasmids” associated with senescence of Podospora anserina were determined (Cummings et al. 1985). One of these sequences, corresponding to the plasmid termed ε senDNA, contains three class I introns, all within a protein coding sequence equivalent to the mammalian “URF1” gene. Here, we present primary and secondary structure analyses for two of these introns as well as a partial analysis for the third, which extends beyond the DNA sequence determined. With regard to both primary and secondary structure, the closest known relative of intron 1 is the self-splicing intron in the large ribosomal RNA gene of Tetrahymena. One secondary structure domain at the periphery of intron 1 and Tetrahymena models is also present in intron 2. The latter intron is the longest known class I member and contains remnants of two protein-coding sequences, one of which is split by the other. Evolutionary processes that might be responsible for the unusual structure of introns 1 and 2 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barell BG, deBruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Nature (London) 290:457–465

    Google Scholar 

  • Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A (1980) J Biol Chem 255:11927–11941

    Google Scholar 

  • Bonnard G, Michel F, Weil J-H, Steinmetz A (1984) Mol Gen Genet 194:330–336

    Google Scholar 

  • Breathnach R, Benoist C, O'Hare K, Gannon F, Chambon P (1978) Proc Natl Acad Sci USA 75:4853–4857

    Google Scholar 

  • Brown TA, Davies RW, Ray JA, Waring RB, Scazzocchio C (1983) EMBO J 2:427–435

    Google Scholar 

  • Burger G, Werner S (1983) Nucleotide sequence and transcript mapping of a mitochondrial DNA segment comprising CO 1, tRNAarg, and several unidentified reading frames in Neurospora crassa. In: Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1983: nucleo-mitochondrial interactions. deGruyter, Berlin, pp 331–342

    Google Scholar 

  • Burke JM, RajBhandary UL (1982) Cell 31:509–520

    Google Scholar 

  • Burke JM, Breitenberger C, Heckman JE, Dujon B, RajBhandary UL (1984) J Biol Chem 259:504–511

    Google Scholar 

  • Capaldi RA, Vanderkooi G (1972) Proc Natl Acad Sci USA 69:930–932

    Google Scholar 

  • Carignani G, Groudinsky O, Frezza D, Schiavon E, Bergantino E, Slonimski PP (1983) Cell 35:733–742

    Google Scholar 

  • Cech TR, Zaug AJ, Grabowski PJ (1981) Cell 27:487–496

    Google Scholar 

  • Cech TR, Tanner NK, Tinoco I Jr, Weir BR, Zuker M, Perlman PS (1983) Proc Natl Acad Sci USA 80:3903–3907

    Google Scholar 

  • Chomyn A, Mariottini P, Cleeter MWJ, Ragan CI, Matsuno-Yagi A, Hatefi Y, Doolittle RF, Attardi G (1985) Nature (London) 314:592–597

    Google Scholar 

  • Clary DO, Goddard JM, Martin SC, Fauron CM-R, Wolstenholme DR (1982) Nucleic Acids Res 10:6619–6637

    Google Scholar 

  • Church G, Gilbert W (1980) Yeast mitochondrial intron products required in trans for RNA splicing. In: Joseph DR, Schultz D, Scott WA, Werner R (eds) Mobilization and reassembly of genetic information. Academic Press, New York London, pp 379–395

    Google Scholar 

  • Coruzzi G, Bonitz FG, Thalenfeld BE, Tzagoloff A (1981) J Biol Chem 256:12780–12787

    Google Scholar 

  • Cummings DJ, MacNeil IA, Domenico J, Matsuura ET (1985) J Mol Biol (in press)

  • Davies RW, Waring RB, Ray JA, Brown TA, Scazzocchio C (1982) Nature (London) 300:719–724

    Google Scholar 

  • Dujon B (1980) Cell 20:185–197

    Google Scholar 

  • Erickson JM, Rahire M, Rochaix J-D (1984) EMBO J 3:2753–2762

    Google Scholar 

  • Fox TD (1979) Proc Natl Acad Sci USA 76:6534–6538

    Google Scholar 

  • Garriga G, Lambowitz AM (1984) Cell 39:631–641

    Google Scholar 

  • Hellmer-Citterich M, Morelli G, Macino G (1983) EMBO J 2:2:1235–1242

    Google Scholar 

  • Hensgens LAM, Bonen L, DeHaan J, Van der Horst G, Grivell LA (1983) Cell 32:379–389

    Google Scholar 

  • Hensgens LAM, Brakenhoff J, DeVries BF, Sloof P, Tromp MC, Van Boom JH, Benne R (1984) Nucleic Acids Res 12:7344–7358

    Google Scholar 

  • Huysmans E, Dams E, Vandenberghe A, DeWachter R (1983) Nucleic Acids Res 11:2871–2879

    Google Scholar 

  • Jacq C, Lazowska J, Slonimski PP (1980) CR Acad Sci Paris Ser D 290:89–92

    Google Scholar 

  • Jacquier A, Dujon B (1983) Mol Gen Genet 192:487–499

    Google Scholar 

  • Jamet-Vierny C, Begel O, Belcour L (1984) Eur J Biochem 143:389–394

    Google Scholar 

  • Keller M, Michel F (1985) FEBS Lett 179:69–73

    Google Scholar 

  • Lang BF (1984) EMBO 13:2129–2136

    Google Scholar 

  • Lazowska J, Jacq C, Slonimski PP (1980) Cell 22:333–348

    Google Scholar 

  • Macino G, Tzagoloff A (1980) Cell 20:507–517

    Google Scholar 

  • Macreadie IG, Novitski CE, Maxwell RJ, John U, Ooi B-G, McMullen GI, Lukins HB, Linnane AW, Nagley P (1983) Nucleic Acids Res 11:4435–4449

    Google Scholar 

  • Michel F (1984) Curr Genet 8:307–317

    Google Scholar 

  • Michel F, Dujon B (1983) EMBO J 2:33–38

    Google Scholar 

  • Michel F, Jacquier A, Dujon B (1982) Biochimie 64:867–881

    Google Scholar 

  • Morelli G, Macino G (1984) J Mol Biol 178:491–507

    Google Scholar 

  • Netzker R, Köchel HG, Basak N, Küntzel H (1982) Nucleic Acids Res 10:4783–4794

    Google Scholar 

  • Osiewacz HD, Esser K (1984) Curr Genet 8:299–305

    Google Scholar 

  • Price JV, Kieft GL, Kent JR, Sievers EL, Cech TR (1985) Nucleic Acids Res 13:1871–1889

    Google Scholar 

  • Rochaix J-D, Rahire M, Michel F (1985) Nucleic Acids Res 13:975–984

    Google Scholar 

  • Schwartz RM, Dayhoff MO (1978) Detection of distant relationships based on point mutation data. In: Matsubara H, Yamanaka T (eds) Evolution of protein molecules. Japan Scientific Societies Press, Center for Academic Publications. Tokyo, pp 1–16

    Google Scholar 

  • Somlo M, Cosson J, Clavilier L, Krupa M, Laporte I (1982) Eur J Biochem 122:369–374

    Google Scholar 

  • Tabak HF, Van der Laan J, Osinga KA, Shouten JP, Van Boom JH, Veneeman GH (1981) Nucleic Acids Res 9:4475–4483

    Google Scholar 

  • Van der Horst G, Tabak HIT (1985) Cell 40:759–766

    Google Scholar 

  • Waring RB, Davies RW (1984) Gene 28:277–291

    Google Scholar 

  • Waring RB, Davies RW, Scazzocchio C, Brown TA (1982) Proc Natl Acad Sci USA 79:6332–6336

    Google Scholar 

  • Waring RB, Davies RW, Brown TA, Scazzocchio C (1983) J Mol Biol 167:595–606

    Google Scholar 

  • Waring RB, Brown TA, Ray JA, Scazzocchio C, Davies RW (1984) EMBO J 3:2121–2128

    Google Scholar 

  • Wild MA, Sommer R (1980) Nature (London) 283:693–694

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, F., Cummings, D.J. Analysis of class I introns in a mitochondrial plasmid associated with senescence of Podospora anserina reveals extraordinary resemblance to the Tetrahymena ribosomal intron. Curr Genet 10, 69–79 (1985). https://doi.org/10.1007/BF00418495

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418495

Key words

Navigation